scispace - formally typeset
Search or ask a question
Author

Rem I. Sukernik

Bio: Rem I. Sukernik is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Population & Haplogroup. The author has an hindex of 27, co-authored 59 publications receiving 6978 citations. Previous affiliations of Rem I. Sukernik include Altai State University & USSR Academy of Medical Sciences.


Papers
More filters
Journal ArticleDOI
Swapan Mallick1, Swapan Mallick2, Swapan Mallick3, Heng Li1, Mark Lipson2, Iain Mathieson2, Melissa Gymrek, Fernando Racimo4, Mengyao Zhao2, Mengyao Zhao3, Mengyao Zhao1, Niru Chennagiri3, Niru Chennagiri2, Niru Chennagiri1, Susanne Nordenfelt3, Susanne Nordenfelt1, Susanne Nordenfelt2, Arti Tandon2, Arti Tandon1, Pontus Skoglund2, Pontus Skoglund1, Iosif Lazaridis1, Iosif Lazaridis2, Sriram Sankararaman5, Sriram Sankararaman2, Sriram Sankararaman1, Qiaomei Fu2, Qiaomei Fu6, Qiaomei Fu1, Nadin Rohland1, Nadin Rohland2, Gabriel Renaud7, Yaniv Erlich8, Thomas Willems9, Carla Gallo10, Jeffrey P. Spence4, Yun S. Song4, Yun S. Song11, Giovanni Poletti10, Francois Balloux12, George van Driem13, Peter de Knijff14, Irene Gallego Romero15, Aashish R. Jha16, Doron M. Behar17, Claudio M. Bravi18, Cristian Capelli19, Tor Hervig20, Andrés Moreno-Estrada, Olga L. Posukh21, Elena Balanovska, Oleg Balanovsky22, Sena Karachanak-Yankova23, Hovhannes Sahakyan17, Hovhannes Sahakyan24, Draga Toncheva23, Levon Yepiskoposyan24, Chris Tyler-Smith25, Yali Xue25, M. Syafiq Abdullah26, Andres Ruiz-Linares12, Cynthia M. Beall27, Anna Di Rienzo16, Choongwon Jeong16, Elena B. Starikovskaya, Ene Metspalu28, Ene Metspalu17, Jüri Parik17, Richard Villems29, Richard Villems17, Richard Villems28, Brenna M. Henn30, Ugur Hodoglugil31, Robert W. Mahley32, Antti Sajantila33, George Stamatoyannopoulos34, Joseph Wee, Rita Khusainova35, Elza Khusnutdinova35, Sergey Litvinov35, Sergey Litvinov17, George Ayodo36, David Comas37, Michael F. Hammer38, Toomas Kivisild17, Toomas Kivisild39, William Klitz, Cheryl A. Winkler40, Damian Labuda41, Michael J. Bamshad34, Lynn B. Jorde42, Sarah A. Tishkoff11, W. Scott Watkins42, Mait Metspalu17, Stanislav Dryomov, Rem I. Sukernik43, Lalji Singh5, Lalji Singh44, Kumarasamy Thangaraj44, Svante Pääbo7, Janet Kelso7, Nick Patterson1, David Reich2, David Reich3, David Reich1 
13 Oct 2016-Nature
TL;DR: It is demonstrated that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Abstract: Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

1,133 citations

Journal ArticleDOI
Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick2, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger8, Bonnie Berger2, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland2, Nadin Rohland1, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua57, Pierre Zalloua1, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems62, Richard Villems43, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich2, David Reich1, David Reich64, Johannes Krause4, Johannes Krause3 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
18 Sep 2014-Nature
TL;DR: It is shown that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians; and early European farmers, who were mainly of Near Eastern origin but also harboured west Europeanhunter-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

1,077 citations

Journal ArticleDOI
TL;DR: It is concluded that selection may have played a role in shaping human regional mtDNA variation and that one of the selective influences was climate.
Abstract: Human mtDNA shows striking regional variation, traditionally attributed to genetic drift. However, it is not easy to account for the fact that only two mtDNA lineages (M and N) left Africa to colonize Eurasia and that lineages A, C, D, and G show a 5-fold enrichment from central Asia to Siberia. As an alternative to drift, natural selection might have enriched for certain mtDNA lineages as people migrated north into colder climates. To test this hypothesis we analyzed 104 complete mtDNA sequences from all global regions and lineages. African mtDNA variation did not significantly deviate from the standard neutral model, but European, Asian, and Siberian plus Native American variations did. Analysis of amino acid substitution mutations (nonsynonymous, Ka) versus neutral mutations (synonymous, Ks) (ka/ks) for all 13 mtDNA protein-coding genes revealed that the ATP6 gene had the highest amino acid sequence variation of any human mtDNA gene, even though ATP6 is one of the more conserved mtDNA proteins. Comparison of the ka/ks ratios for each mtDNA gene from the tropical, temperate, and arctic zones revealed that ATP6 was highly variable in the mtDNAs from the arctic zone, cytochrome b was particularly variable in the temperate zone, and cytochrome oxidase I was notably more variable in the tropics. Moreover, multiple amino acid changes found in ATP6, cytochrome b, and cytochrome oxidase I appeared to be functionally significant. From these analyses we conclude that selection may have played a role in shaping human regional mtDNA variation and that one of the selective influences was climate.

969 citations

Journal ArticleDOI
David Reich1, David Reich2, Nick Patterson2, Desmond Campbell3, Desmond Campbell4, Arti Tandon1, Arti Tandon2, Stéphane Mazières3, Stéphane Mazières5, Nicolas Ray6, María Victoria Parra3, María Victoria Parra7, Winston Rojas7, Winston Rojas3, Constanza Duque3, Constanza Duque7, Natalia Mesa7, Natalia Mesa3, Luis F. García7, Omar Triana7, Silvia Blair7, Amanda Maestre7, Juan Carlos Dib, Claudio M. Bravi8, Claudio M. Bravi3, Graciela Bailliet8, Daniel Corach9, Tábita Hünemeier10, Tábita Hünemeier3, Maria Cátira Bortolini10, Francisco M. Salzano10, Maria Luiza Petzl-Erler11, Victor Acuña-Alonzo, Carlos A. Aguilar-Salinas, Samuel Canizales-Quinteros12, Teresa Tusié-Luna12, Laura Riba12, Maricela Rodríguez-Cruz13, Mardia López-Alarcón13, Ramón Mauricio Coral-Vázquez14, Thelma Canto-Cetina, Irma Silva-Zolezzi15, Juan Carlos Fernández-López, Alejandra V. Contreras, Gerardo Jimenez-Sanchez15, María José Gómez-Vázquez16, Julio Molina, Angel Carracedo17, Antonio Salas17, Carla Gallo18, Giovanni Poletti18, David B. Witonsky19, Gorka Alkorta-Aranburu19, Rem I. Sukernik20, Ludmila P. Osipova20, Sardana A. Fedorova, René Vasquez, Mercedes Villena, Claudia Moreau21, Ramiro Barrantes22, David L. Pauls1, Laurent Excoffier23, Laurent Excoffier24, Gabriel Bedoya7, Francisco Rothhammer25, Jean-Michel Dugoujon26, Georges Larrouy26, William Klitz27, Damian Labuda21, Judith R. Kidd28, Kenneth K. Kidd28, Anna Di Rienzo19, Nelson B. Freimer29, Alkes L. Price2, Alkes L. Price1, Andres Ruiz-Linares3 
16 Aug 2012-Nature
TL;DR: It is shown that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America.
Abstract: The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call 'First American'. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.

696 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger2, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland2, Nadin Rohland1, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua57, Pierre Zalloua1, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems62, Richard Villems43, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich1, David Reich2, Johannes Krause3, Johannes Krause4 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Tarapacá47, University of Chile48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The mitochondria provide a direct link between the authors' environment and their genes and the mtDNA variants that permitted their forbears to energetically adapt to their ancestral homes are influencing their health today.
Abstract: Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the agerelated diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.

3,016 citations

Journal ArticleDOI
TL;DR: A critical examination of the neglected biology of mitochondria is carried out and several surprising gaps in the state of the authors' knowledge about this important organelle are pointed out.
Abstract: Mitochondrial DNA (mtDNA) has been used to study molecular ecology and phylogeography for 25 years. Much important information has been gained in this way, but it is time to reflect on the biology of the mitochondrion itself and consider opportunities for evolutionary studies of the organelle itself and its ecology, biochemistry and physiology. This review has four sections. First, we review aspects of the natural history of mitochondria and their DNA to show that it is a unique molecule with specific characteristics that differ from nuclear DNA. We do not attempt to cover the plethora of differences between mitochondrial and nuclear DNA; rather we spotlight differences that can cause significant bias when inferring demographic properties of populations and/or the evolutionary history of species. We focus on recombination, effective population size and mutation rate. Second, we explore some of the difficulties in interpreting phylogeographical data from mtDNA data alone and suggest a broader use of multiple nuclear markers. We argue that mtDNA is not a sufficient marker for phylogeographical studies if the focus of the investigation is the species and not the organelle. We focus on the potential bias caused by introgression. Third, we show that it is not safe to assume a priori that mtDNA evolves as a strictly neutral marker because both direct and indirect selection influence mitochondria. We outline some of the statistical tests of neutrality that can, and should, be applied to mtDNA sequence data prior to making any global statements concerning the history of the organism. We conclude with a critical examination of the neglected biology of mitochondria and point out several surprising gaps in the state of our knowledge about this important organelle. Here we limelight mitochondrial ecology, sexually antagonistic selection, life-history evolution including ageing and disease, and the evolution of mitochondrial inheritance.

2,008 citations

Journal ArticleDOI
01 Nov 2012-Genetics
TL;DR: A suite of methods for learning about population mixtures are presented, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture.
Abstract: Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean "Iceman."

1,877 citations