scispace - formally typeset
Search or ask a question
Author

Rémi Rhodes

Bio: Rémi Rhodes is an academic researcher from University of Paris. The author has contributed to research in topics: Quantum gravity & Multiplicative function. The author has an hindex of 31, co-authored 97 publications receiving 2949 citations. Previous affiliations of Rémi Rhodes include CEREMADE & University of Marne-la-Vallée.


Papers
More filters
Journal ArticleDOI
TL;DR: The theory of Gaussian multiplicative chaos was introduced by Kahane's seminal work in 1985 as discussed by the authors, and it has been applied in many applications, ranging from finance to quantum gravity.
Abstract: In this article, we review the theory of Gaussian multiplicative chaos initially introduced by Kahane’s seminal work in 1985. Though this beautiful paper faded from memory until recently, it already contains ideas and results that are nowadays under active investigation, like the construction of the Liouville measure in $2d$-Liouville quantum gravity or thick points of the Gaussian Free Field. Also, we mention important extensions and generalizations of this theory that have emerged ever since and discuss a whole family of applications, ranging from finance, through the Kolmogorov-Obukhov model of turbulence to $2d$-Liouville quantum gravity. This review also includes new results like the convergence of discretized Liouville measures on isoradial graphs (thus including the triangle and square lattices) towards the continuous Liouville measures (in the subcritical and critical case) or multifractal analysis of the measures in all dimensions.

469 citations

Journal ArticleDOI
TL;DR: In this article, the authors rigorously construct 2D Liouville Quantum Field Theory on the Riemann sphere introduced in the 1981 seminal work by Polyakov Quantum Geometry of bosonic strings.
Abstract: In this paper, we rigorously construct 2d Liouville Quantum Field Theory on the Riemann sphere introduced in the 1981 seminal work by Polyakov Quantum Geometry of bosonic strings. We also establish some of its fundamental properties like conformal covariance un-der P SL 2 (C)-action, Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly (Polyakov-Ray-Singer) formula for Liouville Quantum Gravity.

212 citations

Journal ArticleDOI
TL;DR: In this article, a renormalization procedure is needed to make this precise, since X oscillates between −∞ and ∞ and is not a function in the usual sense.
Abstract: Gaussian Multiplicative Chaos is a way to produce a measure on \({\mathbb{R}^d}\) (or subdomain of \({\mathbb{R}^d}\)) of the form \({e^{\gamma X(x)} dx}\), where X is a log-correlated Gaussian field and \({\gamma \in [0, \sqrt{2d})}\) is a fixed constant. A renormalization procedure is needed to make this precise, since X oscillates between −∞ and ∞ and is not a function in the usual sense. This procedure yields the zero measure when \({\gamma = \sqrt{2d}}\).

153 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the derivative martingale, introduced in the context of branching Brownian motions and branching random walks, converges almost surely (in all dimensions) to a random measure with full support.
Abstract: In this paper, we study Gaussian multiplicative chaos in the critical case. We show that the so-called derivative martingale, introduced in the context of branching Brownian motions and branching random walks, converges almost surely (in all dimensions) to a random measure with full support. We also show that the limiting measure has no atom. In connection with the derivative martingale, we write explicit conjectures about the glassy phase of log-correlated Gaussian potentials and the relation with the asymptotic expansion of the maximum of log-correlated Gaussian random variables.

141 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the derivative martingale, introduced in the context of branching Brownian motions and branching random walks, converges almost surely (in all dimensions) to a random measure with full support.
Abstract: In this paper, we study Gaussian multiplicative chaos in the critical case. We show that the so-called derivative martingale, introduced in the context of branching Brownian motions and branching random walks, converges almost surely (in all dimensions) to a random measure with full support. We also show that the limiting measure has no atom. In connection with the derivative martingale, we write explicit conjectures about the glassy phase of log-correlated Gaussian potentials and the relation with the asymptotic expansion of the maximum of log-correlated Gaussian random variables.

128 citations


Cited by
More filters
Book ChapterDOI
31 Oct 2006

1,424 citations

01 Jan 2016
TL;DR: An introduction to the theory of point processes is universally compatible with any devices to read and will help you get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading an introduction to the theory of point processes. As you may know, people have search hundreds times for their chosen novels like this an introduction to the theory of point processes, but end up in infectious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some harmful virus inside their computer. an introduction to the theory of point processes is available in our digital library an online access to it is set as public so you can download it instantly. Our book servers hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the an introduction to the theory of point processes is universally compatible with any devices to read.

903 citations

Journal ArticleDOI
TL;DR: The theory of Gaussian multiplicative chaos was introduced by Kahane's seminal work in 1985 as discussed by the authors, and it has been applied in many applications, ranging from finance to quantum gravity.
Abstract: In this article, we review the theory of Gaussian multiplicative chaos initially introduced by Kahane’s seminal work in 1985. Though this beautiful paper faded from memory until recently, it already contains ideas and results that are nowadays under active investigation, like the construction of the Liouville measure in $2d$-Liouville quantum gravity or thick points of the Gaussian Free Field. Also, we mention important extensions and generalizations of this theory that have emerged ever since and discuss a whole family of applications, ranging from finance, through the Kolmogorov-Obukhov model of turbulence to $2d$-Liouville quantum gravity. This review also includes new results like the convergence of discretized Liouville measures on isoradial graphs (thus including the triangle and square lattices) towards the continuous Liouville measures (in the subcritical and critical case) or multifractal analysis of the measures in all dimensions.

469 citations

Journal ArticleDOI
TL;DR: In this article, a general quadratic relation between these two dimensions was derived, which they view as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819-826, 1988) relation from conformal field theory.
Abstract: Consider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy (2π)−1∫ D ∇h(z)⋅∇h(z)dz, and a constant 0≤γ<2. The Liouville quantum gravity measure on D is the weak limit as e→0 of the measures $$\varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(z)}dz,$$ where dz is Lebesgue measure on D and h e (z) denotes the mean value of h on the circle of radius e centered at z. Given a random (or deterministic) subset X of D one can define the scaling dimension of X using either Lebesgue measure or this random measure. We derive a general quadratic relation between these two dimensions, which we view as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819–826, 1988) relation from conformal field theory. We also present a boundary analog of KPZ (for subsets of ∂D). We discuss the connection between discrete and continuum quantum gravity and provide a framework for understanding Euclidean scaling exponents via quantum gravity.

461 citations