scispace - formally typeset
Search or ask a question
Author

Renata Fuganti-Pagliarini

Bio: Renata Fuganti-Pagliarini is an academic researcher from Empresa Brasileira de Pesquisa Agropecuária. The author has contributed to research in topics: Drought tolerance & Abscisic acid. The author has an hindex of 11, co-authored 22 publications receiving 451 citations.

Papers
More filters
Journal ArticleDOI
27 Jan 2014-PLOS ONE
TL;DR: Results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.
Abstract: Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.

100 citations

Journal ArticleDOI
TL;DR: Although the dehydration-responsive element-binding protein (DREB) plants did not outperform the cultivar BR16 in terms of yield, some yield components were increased when drought was introduced during the vegetative stage, and greenhouse data suggest that the higher survival rates of DREB plants are because of lower water use due to lower transpiration rates under well watered conditions.
Abstract: The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress defense responses This work assessed the performance of soybean plants overexpressing the TF DREB1A under drought conditions in the field and in the greenhouse Drought was simulated in the greenhouse by progressively drying the soil of pot cultures of the P58 and P1142 lines In the field, the performance of the P58 line and of 09D-0077, a cross between the cultivars BR16 and P58, was evaluated under four different water regimes: irrigation, natural drought (no irrigation) and water stress created using rain-out shelters in the vegetative or reproductive stages Although the dehydration-responsive element-binding protein (DREB) plants did not outperform the cultivar BR16 in terms of yield, some yield components were increased when drought was introduced during the vegetative stage, such as the number of seeds, the number of pods with seeds and the total number of pods The greenhouse data suggest that the higher survival rates of DREB plants are because of lower water use due to lower transpiration rates under well watered conditions Further studies are needed to better characterize the soil and atmospheric conditions under which these plants may outperform the non-transformed parental plants

76 citations

Journal ArticleDOI
TL;DR: The potential for improving drought tolerance by overexpressing AtAREB1 in soybean plants is shown and water stress tolerance was particularly improved in the low-copy lines A24.10 and A2889.12.
Abstract: Among current strategies for the development of drought-tolerant plants, engineering transcription factors that regulate the expression of genes related to abiotic stress is promising. Soybean plants overexpressing the transcription factor AtAREB1, which is involved in abscisic acid (ABA)-dependent stress responses, were generated using biolistics. Embryos of cultivar BR16, which is considered drought sensitive, were co-transformed with two plant expression vectors, 35S::AtAREB1 and 35S::ahas. Among the lines obtained, the drought tolerance of A24.10 and A2889.12 was assessed because these lines overexpressed the AtAREB1 gene and had a low copy number of the transgene. Another line, A2057.03, was also selected because it had a high copy number of the transgene (more than 100 copies) and low levels of transgene expression. Among the two low-copy lines, the A24.10 plants exhibited a slightly lower number of leaves and a shortening of the internode length; however, no growth retardation was observed for the line A2057.03. Water stress tolerance was particularly improved in the low-copy lines A24.10 and A2889.12. Plants of these lines were able to survive a water stress period of 5 days and exhibited no leaf damage, i.e., dried areas in the leaves 3 days after rewatering. Furthermore, these lines exhibited better growth and physiological performance under water-deficit (higher relative rate of shoot length, stomatal conductance, and photosynthesis) when compared to the wild type. Our results show the potential for improving drought tolerance by overexpressing AtAREB1 in soybean.

59 citations

Journal ArticleDOI
TL;DR: These field screenings showed promising results for drought tolerance in genetically modified plants, however, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.
Abstract: Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193) and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.

52 citations

Journal ArticleDOI
TL;DR: Time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants, andGene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions.
Abstract: Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55 % were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52 % exhibited expression oscillations in a 24 h period. This number increased to 39.23 % when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses and the important roles of these TFs in crosstalk among abiotic stress responses will be discussed.
Abstract: Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

664 citations

Journal ArticleDOI
TL;DR: The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought.
Abstract: Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution towards improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern “OMICS” analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought.

499 citations

Journal ArticleDOI
28 Jan 2021
TL;DR: In this paper, the authors have discussed the sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants, including growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root-to-shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement of transpiration efficiency, osmotic and hormonal regulation, and delayed senescence.
Abstract: Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.

324 citations

Journal ArticleDOI
TL;DR: This review examines the roles that alleles of circadian clock genes have played in domestication and improvement of crop plants and focuses on three groups of circadianclock genes essential to clock function in Arabidopsis thaliana: PSEUDO-RESPONSE REGULATORs, GIGANTEA, and the evening complex genes early flowering 3, early flowering 4, and lux arrhythmo.

167 citations