scispace - formally typeset
Search or ask a question
Author

Renáta Kovalčíková

Bio: Renáta Kovalčíková is an academic researcher from University of Constantine the Philosopher. The author has contributed to research in topics: Sorption. The author has an hindex of 1, co-authored 1 publications receiving 4 citations.
Topics: Sorption

Papers
More filters
Journal ArticleDOI
TL;DR: P pH variations of aqueous extracts from the wool samples depending on absorbed dose and post-exposure time indicate complexity of the structural transformation being specific for each dose applied.
Abstract: Sorption of Co(II) was investigated on natural as well as accelerated electron beam modified sheep wool involving low and high concentrations up to 200 mmol·dm−3. The sorption experiments confirmed the dependence of the sorption capacity not only on sorbate concentration and absorbed dose of energy, but also on post-exposure time. Post-exposure heating to accelerate transformation of the wool structure was of no effect on the sorption comparing with a simple storage for a period of 100 days. Under all tested conditions, the sorption maximum was measured for Co(II) concentration of 125 mmol·dm−3 and that was assigned to form a Co(II) complex with keratin. This assumption was tested on visible spectra of mixed solutions of Arginine and Co(II) to be a simplified model of Co(II) interaction with keratin. The sorption decrease is associated with generation of cross links between macro-chains through ligands of the Co-complex. The nodal points are a hindrance to diffusion of next ions into the fibers. Also, pH variations of aqueous extracts from the wool samples depending on absorbed dose and post-exposure time indicate complexity of the structural transformation being specific for each dose applied.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The characteristics of an electron beam irradiated wool with an absorbed dose of (21–410) kGy in comparison with natural wool with respect to the determination of the isoelectric point (IEP), zero charge point (ZCP), mechanism of Cr(III) sorption from higher concentrated solutions, and the modelling of the wool-Cr( III) interaction are examined.
Abstract: We examined the characteristics of an electron beam irradiated wool with an absorbed dose of (21–410) kGy in comparison with natural wool with respect to the determination of the isoelectric point (IEP), zero charge point (ZCP), mechanism of Cr(III) sorption from higher concentrated solutions, and the modelling of the wool-Cr(III) interaction. The data of ZPC and IEP differed between natural and irradiated samples. Increasing the dose shifted the pH of ZPC from 6.85 for natural wool to 6.20 for the highest dosed wool, while the natural wool IEP moved very little, from pH = 3.35 to 3.40 for all of the irradiated samples. The sorption experiments were performed in a pH bath set at 3.40, and the determination of the residual Cr(III) in the bath was performed by VIS spectrometry under optimized conditions. The resulting sorptivity showed a monotonically rising trend with increasing Cr(III) concentration in the bath. Lower doses, unlike higher doses, showed better sorptivity than the natural wool. FTIR data indicated the formation of complex chromite salts of carboxylates and cysteinates. Crosslinks via ligands coming from different keratin chains were predicted, preferably on the surface of the fibers, but to a degree that did not yet inhibit the diffusion of Cr(III)-cations into the fiber volume. We also present a concept of a complex octahedral structure.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the chromic cation showed adherence to Freundlich, Temkin, Halsey, Harkins-Jura and Jovanovic models for all or almost all dosed samples.

7 citations

Journal ArticleDOI
TL;DR: In this article, the effect of humidity on sheep wool during irradiation by an accelerated electron beam was examined, and the results showed that the sorptivity results showed considerable dependence on wool humidity under exposure.
Abstract: The effect of humidity on sheep wool during irradiation by an accelerated electron beam was examined. Each of the samples with 10%, 53%, and 97% relative humidity (RH) absorbed a dose of 0, 109, and 257 kGy, respectively. After being freely kept in common laboratory conditions, the samples were subjected to batch Co(II) sorption experiments monitored with VIS spectrometry for different lapses from electron beam exposure. Along with the sorption, FTIR spectral analysis of the wool samples was conducted for cysteic acid and cystine monoxide, and later, the examination was completed, with pH measuring 0.05 molar KCl extract from the wool samples. Besides a relationship to the absorbed dose and lapse, the sorptivity results showed considerable dependence on wool humidity under exposure. When humidity was deficient (10% RH), the sorptivity was lower due to limited transformation of cystine monoxide to cysteic acid. The wool pre-conditioned at 53% RH, which is the humidity close to common environmental conditions, demonstrated the best Co(II) sorptivity in any case. This finding enables the elimination of pre-exposure wool conditioning in practice. Under excessive humidity of 97% RH and enough high dose of 257 kGy, radiolysis of water occurred, deteriorating the sorptivity. Each wool humidity, dose, and lapse showed a particular scenario. The time and humidity variations in the sorptivity for the non-irradiated sample were a little surprising; despite the absence of electron irradiation, relevant results indicated a strong sensitivity to pre-condition humidity and lapse from the start of the monitoring.

3 citations

Journal ArticleDOI
TL;DR: In this article , the effect of the dose absorbed by wool on simultaneous sorption of these cations due to surface and bulk changes was examined, and it was concluded that optimally dosed wool could provide a special adsorbent suitable to control preferential sorption.
Abstract: Sheep wool irradiated by an electron beam was tested for adsorption of Cr(III) and Cu(II) from binary solutions within the same concentration of each cation from 15 to 35 mmol·dm–3. The wool sorptivity examination was aimed at searching the effect of the dose absorbed by wool on simultaneous sorption of these cations due to surface and bulk changes. The partners affected each other under these conditions. In the whole concentration range, the sorptivity of nonirradiated wool (0 kGy) for Cu(II) fluctuated within the range of 14.5–20.7 mg·g–1, while sorptivity for Cr(III) ranged from 14.8 to 7.5 mg·g–1. However, sorptivity for Cu(II) was always superior to Cr(III). At a 24 kGy dose, the wool sorptivity for both cations decreased approximately by half and tended to converge, whereby at 20 mmol·dm–3, a slight predominance for Cr(III) was already observed. However, the sorptivity of 100 kGy dosed wool acquired a clear predominance for Cr(III) over Cu(II) in the entire concentration range, showing some leveling around 14.5 mg·g–1. Sorptivity for Cu(II) was suppressed and increased nonlinearly with concentrations from 1.7 to 10.2 mg·g–1. It was concluded that optimally dosed wool could provide a special adsorbent suitable to control preferential sorption of some cations from binary solutions.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors applied 10 adaption isotherm models applied to adsorption of Cr(III) and Cu(II) from binary solutions on electron-irradiated sheep wool (0-24-100) kGy.
Abstract: This work analyses 10 adsorption isotherm models applied to adsorption of Cr(III) and Cu(II) from binary solutions on electron-irradiated sheep wool (0-24-100) kGy. The results are compared with fitting the same adsorbates from corresponding single solutions. The competing cation significantly changes the fitting of the selected isotherms to the extent that even simultaneous fitting of the same cation in the single and binary solution is rare. In the case of Cr(III), 4 favourable matches were found out of 30 compared cases, while in the case of Cu(II), only 2 conformities were found. Having the Cr(III) coordination number exclusively of 6, but Cu(II) up to 4, 5, 6, the last coordinates more easily with the ligands provided by keratin, resulting in preferential chemisorption. If there is still a lack of cysteic acid in the wool to interact with Cr(III) also, this is adsorbed on the wool physically, too. The amount of cysteic acid increasing in the wool with the absorbed dose of energy improves the chemisorption of Cr(III), as well. It can be summarized that during competitive adsorption, Cu(II) binds by chemisorption and Cr(III) by both physisorption and chemisorption, depending on the dose of energy absorbed by the wool.

1 citations