scispace - formally typeset
Search or ask a question
Author

Renaud Morin

Bio: Renaud Morin is an academic researcher from University of Toulouse. The author has contributed to research in topics: Image resolution & Follicular lymphoma. The author has an hindex of 6, co-authored 10 publications receiving 149 citations.

Papers
More filters
Proceedings ArticleDOI
01 Sep 2013
TL;DR: This paper investigates a novel approach based on semi-blind deconvolution formulation and alternating direction method framework in order to perform the ultrasound image restoration task and demonstrates that the technique is more robust to uncertainties in the a priori ultrasonic pulse than classical non-blind decomvolution methods.
Abstract: In the field of ultrasound imaging, resolution enhancement is an up-to-date challenging task. Many device-based approaches have been proposed to overcome the low resolution nature of ultrasound images but very few works deal with post-processing methods. This paper investigates a novel approach based on semi-blind deconvolution formulation and alternating direction method framework in order to perform the ultrasound image restoration task. The algorithm performance is addressed using optical images and synthetic ultrasound data for a various range of criteria. The results demonstrate that our technique is more robust to uncertainties in the a priori ultrasonic pulse than classical non-blind deconvolution methods.

46 citations

Journal ArticleDOI
TL;DR: The data provide a treatment rational by PD-1 blockade aimed at boosting γδ T cell anti-tumor functions in FL and identify a PD1-regulated γ Δ T cell cytolytic immune component in FL.
Abstract: Follicular lymphoma (FL) is a common non Hodgkin's lymphoma subtype in which immune escape mechanisms are implicated in resistance to chemo-immunotherapy. Although molecular studies point to qualitative and quantitative deregulation of immune checkpoints, in depth cellular analysis of FL immune escape is lacking. Here, by functional assays and in silico analyses we show that a subset of FL patients displays a 'high' immune escape phenotype. These FL cases are characterized by abundant infiltration of PD1+ CD16+ TCRVγ9Vδ2 γδ T lymphocytes. In a 3D co-culture assay (MALC), γδ T cells mediate both direct and indirect (ADCC in the presence of anti-CD20 mAbs) cytolytic activity against FL cell aggregates. Importantly, PD-1, which is expressed by most FL-infiltrating γδ T lymphocytes with ADCC capacity, impairs these functions. In conclusion, we identify a PD1-regulated γδ T cell cytolytic immune component in FL. Our data provide a treatment rational by PD-1 blockade aimed at boosting γδ T cell anti-tumor functions in FL.

42 citations

Journal ArticleDOI
TL;DR: The ANCHOR3 system is the first technique that allows the continuous visualization of adenoviral genomes during the entire virus life cycle, opening the way for further in-depth study, and characterize the spatiotemporal organization ofAdenovirus replication and identify two kinetically distinct phases of viral genome replication.
Abstract: Adenoviruses are DNA viruses with a lytic infection cycle. Following the fate of incoming as well as recently replicated genomes during infections is a challenge. In this study, we used the ANCHOR3 technology based on a bacterial partitioning system to establish a versatile in vivo imaging system for adenoviral genomes. The system allows the visualization of both individual incoming and newly replicated genomes in real time in living cells. We demonstrate that incoming adenoviral genomes are attached to condensed cellular chromatin during mitosis, facilitating the equal distribution of viral genomes in daughter cells after cell division. We show that the formation of replication centers occurs in conjunction with in vivo genome replication and determine replication rates. Visualization of adenoviral DNA revealed that adenoviruses exhibit two kinetically distinct phases of genome replication. Low-level replication occurred during early replication, while high-level replication was associated with late replication phases. The transition between these phases occurred concomitantly with morphological changes of viral replication compartments and with the appearance of virus-induced postreplication (ViPR) bodies, identified by the nucleolar protein Mybbp1A. Taken together, our real-time genome imaging system revealed hitherto uncharacterized features of adenoviral genomes in vivo The system is able to identify novel spatiotemporal aspects of the adenovirus life cycle and is potentially transferable to other viral systems with a double-stranded DNA phase.IMPORTANCE Viruses must deliver their genomes to host cells to ensure replication and propagation. Characterizing the fate of viral genomes is crucial to understand the viral life cycle and the fate of virus-derived vector tools. Here, we integrated the ANCHOR3 system, an in vivo DNA-tagging technology, into the adenoviral genome for real-time genome detection. ANCHOR3 tagging permitted the in vivo visualization of incoming genomes at the onset of infection and of replicated genomes at late phases of infection. Using this system, we show viral genome attachment to condensed host chromosomes during mitosis, identifying this mechanism as a mode of cell-to-cell transfer. We characterize the spatiotemporal organization of adenovirus replication and identify two kinetically distinct phases of viral genome replication. The ANCHOR3 system is the first technique that allows the continuous visualization of adenoviral genomes during the entire virus life cycle, opening the way for further in-depth study.

35 citations

Proceedings ArticleDOI
02 May 2012
TL;DR: This paper investigates a technique based on the Alternating Direction Method of Multipliers for the resolution enhancement in ultrasound imaging, which includes the deblurring and denoising tasks.
Abstract: Ultrasound image resolution enhancement is an ongoing challenge to date. Though many works have been performed using device-based approach, there exists few works dealing with post-processing methods. This paper investigates a technique based on the Alternating Direction Method of Multipliers for the resolution enhancement in ultrasound imaging, which includes the deblurring and denoising tasks. We here point out the characteristics of the proposed technique and thereby underline the features that must be dealt with for successful ultrasound image restoration. Synthetic and in vivo ultrasound images are processed in order to asses its performances.

26 citations

Journal ArticleDOI
TL;DR: This work investigates motion estimation methods adapted to US imaging and shows how to overcome the limit of SR in this framework by refining the registration part of common multiframe techniques.

18 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014
TL;DR: The current comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy, and common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super- resolution algorithms, and the most commonly employed databases are discussed.
Abstract: Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real-world problems in different fields, from satellite and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy. For each of the groups in the taxonomy, the basic concepts of the algorithms are first explained and then the paths through which each of these groups have evolved are given in detail, by mentioning the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super-resolution algorithms, and the most commonly employed databases are discussed.

602 citations

Journal ArticleDOI
TL;DR: This book serves as an introduction to the flourishing field of super-resolution imaging and is a compiled volume, with different authors for each of its 14 chapters.
Abstract: This book serves as an introduction to the flourishing field of super-resolution imaging. It is a compiled volume, with different authors for each of its 14 chapters. While not having a strong outline or textbook format, the chapters group into several sections.

216 citations

Journal ArticleDOI
TL;DR: The rapidly accumulating preclinical evidence in support of antitumour is discussed, but also of some pro-tumour, roles for γδ T cells in cancer progression and the potential for manipulating their functions for use as an unconventional form of cancer immunotherapy is outlined.
Abstract: The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.

212 citations

Journal ArticleDOI
TL;DR: It is shown that high-resolution clustering of large scRNA-seq datasets and a combination of gene signatures allow the specific detection of human γδ T lymphocytes and identification of their T cell receptor (TCR)Vδ1 and TCRvδ2 subsets in large datasets from complex cell mixtures.
Abstract: γδ T lymphocytes represent ∼1% of human peripheral blood mononuclear cells and even more cells in most tissues of vertebrates. Although they have important anticancer functions, most current single-cell RNA sequencing (scRNA-seq) studies do not identify γδ T lymphocytes because their transcriptomes at the single-cell level are unknown. Here we show that high-resolution clustering of large scRNA-seq datasets and a combination of gene signatures allow the specific detection of human γδ T lymphocytes and identification of their T cell receptor (TCR)Vδ1 and TCRVδ2 subsets in large datasets from complex cell mixtures. In t-distributed stochastic neighbor embedding plots from blood and tumor samples, the few γδ T lymphocytes appear collectively embedded between cytotoxic CD8 T and NK cells. Their TCRVδ1 and TCRVδ2 subsets form close yet distinct subclusters, respectively neighboring NK and CD8 T cells because of expression of shared and distinct cytotoxic maturation genes. Similar pseudotime maturation trajectories of TCRVδ1 and TCRVδ2 γδ T lymphocytes were discovered, unveiling in both subsets an unattended pool of terminally differentiated effector memory cells with preserved proliferative capacity, a finding confirmed by in vitro proliferation assays. Overall, the single-cell transcriptomes of thousands of individual γδ T lymphocytes from different CMV+ and CMV− donors reflect cytotoxic maturation stages driven by the immunological history of donors. This landmark study establishes the rationale for identification, subtyping, and deep characterization of human γδ T lymphocytes in further scRNA-seq studies of complex tissues in physiological and disease conditions.

120 citations

Journal ArticleDOI
TL;DR: In the case of non-Gaussian priors, it is shown how the analytical solution derived from the Gaussian case can be embedded into traditional splitting frameworks, allowing the computation cost of existing algorithms to be decreased significantly.
Abstract: This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high-resolution image from its blurred, decimated, and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based methods dividing the SR problem into up-sampling and deconvolution steps that can be easily solved. Instead of following this splitting strategy, we propose to deal with the decimation and blurring operators simultaneously by taking advantage of their particular properties in the frequency domain, leading to a new fast SR approach. Specifically, an analytical solution is derived and implemented efficiently for the Gaussian prior or any other regularization that can be formulated into an $\ell _{2}$ -regularized quadratic model, i.e., an $\ell _{2}$ – $\ell _{2}$ optimization problem. The flexibility of the proposed SR scheme is shown through the use of various priors/regularizations, ranging from generic image priors to learning-based approaches. In the case of non-Gaussian priors, we show how the analytical solution derived from the Gaussian case can be embedded into traditional splitting frameworks, allowing the computation cost of existing algorithms to be decreased significantly. Simulation results conducted on several images with different priors illustrate the effectiveness of our fast SR approach compared with existing techniques.

104 citations