scispace - formally typeset
Search or ask a question
Author

Rene Beigang

Bio: Rene Beigang is an academic researcher from Kaiserslautern University of Technology. The author has contributed to research in topics: Terahertz radiation & Terahertz spectroscopy and technology. The author has an hindex of 36, co-authored 233 publications receiving 3903 citations. Previous affiliations of Rene Beigang include Schrödinger & Oklahoma State University–Stillwater.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the optical properties of spectrally broadband metamaterial-based gradient index (GRIN) lenses have been studied for terahertz imaging systems with high spatial resolution.
Abstract: The development of innovative terahertz (THz) imaging systems has recently moved in the focus of scientific efforts due to the ability to screen substances through textiles or plastics. The invention of THz imaging systems with high spatial resolution is of increasing interest for applications in the realms of quality control, spectroscopy in dusty environment and security inspections. To realize compact THz imaging systems with high spatial resolution it is necessary to develop lenses of minimized thickness that still allow one to focus THz radiation to small spot diameters with low optical aberrations. In addition, it would be desirable if the lenses offered adaptive control of their optical properties to optimize the performance of the imaging systems in the context of different applications. Here we present the design, fabrication and the measurement of the optical properties of spectrally broadband metamaterial-based gradient index (GRIN) lenses that allow one to focus THz radiation to a spot diameter of approximately one wavelength. Due to the subwavelength thickness and the high focusing strength the presented GRIN lenses are an important step towards compact THz imaging systems with high spatial resolution. Furthermore, the results open the path to a new class of adaptive THz optics by extension of the concept to tunable metamaterials.

152 citations

Journal ArticleDOI
TL;DR: A bulk metamaterial with negative refractive index in the terahertz frequency range, composed of pairs of metallic crosses embedded in Benzocyclobutene, which allows the fabrication of 3D structures by mechanical stacking of multiple thin films.
Abstract: We present a bulk metamaterial with negative refractive index in the terahertz frequency range. The structure is composed of pairs of metallic crosses embedded in Benzocyclobutene (BCB). The design is specifically chosen to provide a low-loss, free-standing material which operates under normal incidence and independently of the polarization of the incident radiation. These qualities allow the fabrication of 3D structures by mechanical stacking of multiple thin films.

140 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry, which combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit.
Abstract: In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

139 citations

Journal ArticleDOI
TL;DR: The design, fabrication and the measurement of the optical properties of spectrally broadband metamaterial-based gradient index (GRIN) lenses that allow one to focus terahertz radiation to a spot diameter of approximately one wavelength open the path to a new class of adaptive THz optics by extension of the concept to tunable meetamaterials.
Abstract: The development of innovative terahertz (THz) imaging systems has recently moved in the focus of scientific efforts due to the ability to screen substances through textiles or plastics. The invention of THz imaging systems with high spatial resolution is of increasing interest for applications in the realms of quality control, spectroscopy in dusty environment and security inspections. One of the main restrictions of current THz imaging systems is the low spatial resolution which is limited by a lack of THz lenses with strong focusing capabilities. Here we present the design, fabrication and the measurement of the optical properties of spectrally broadband metamaterial-based gradient index (GRIN) lenses that allow one to focus THz radiation to a spot diameter smaller than the wavelength. Due to the subwavelength thickness and the high focusing strength the presented GRIN lenses are an important step towards compact THz imaging systems with strongly improved spatial resolution.

134 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative study of magnetic-field-enhanced THz generation in semiconductor surfaces of InSb, InAs, InP, GaAs, and GaSb is reported.
Abstract: A comparative study of magnetic-field-enhanced THz generation in semiconductor surfaces of InSb, InAs, InP, GaAs, and GaSb is reported. Applying an external magnetic field, the power of the generated THz radiation is increased for all examined semiconductor materials. The use of time-resolved measurements of the THz waveform allows to distinguish between the fraction of radiation originating from the surface depletion field and the fraction that is additionally generated by the magnetic field. It turns out that the power enhancement factor due to the magnetic field is inversely proportional to the effective electron mass.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the fabrication of three-dimensional metamaterial structures and discuss some of the remaining challenges, including ultra-high-resolution imaging systems, compact polarization optics and cloaking devices.
Abstract: Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks. This deceptively simple yet powerful concept allows the realization of many new and unusual optical properties, such as magnetism at optical frequencies, negative refractive index, large positive refractive index, zero reflection through impedance matching, perfect absorption, giant circular dichroism and enhanced nonlinear optical properties. Possible applications of metamaterials include ultrahigh-resolution imaging systems, compact polarization optics and cloaking devices. This Review describes recent progress in the fabrication of three-dimensional metamaterial structures and discusses some of the remaining challenges.

1,594 citations

Journal ArticleDOI
TL;DR: It is demonstrated theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency, and may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.
Abstract: The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs) and surface waves (SWs) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction. Here, we demonstrate theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency. Distinct from conventional devices such as prism or grating couplers, the momentum mismatch between PW and SW is compensated by the reflection-phase gradient of the meta-surface, and a nearly perfect PW-SW conversion can happen for any incidence angle larger than a critical value. Experiments in the microwave region, including both far-field and near-field characterizations, are in excellent agreement with full-wave simulations. Our findings may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.

1,567 citations

Journal ArticleDOI
TL;DR: This work combines theory and experiment to demonstrate that a carefully designed gradient meta-surface supports high-efficiency anomalous reflections for near-infrared light following the generalized Snell's law, and the reflected wave becomes a bounded surface wave as the incident angle exceeds a critical value.
Abstract: We combine theory and experiment to demonstrate that a carefully designed gradient meta-surface supports high-efficiency anomalous reflections for near-infrared light following the generalized Snell's law, and the reflected wave becomes a bounded surface wave as the incident angle exceeds a critical value. Compared to previously fabricated gradient meta-surfaces in infrared regime, our samples work in a shorter wavelength regime with a broad bandwidth (750-900 nm), exhibit a much higher conversion efficiency (∼80%) to the anomalous reflection mode at normal incidence, and keep light polarization unchanged after the anomalous reflection. Finite-difference-time-domain (FDTD) simulations are in excellent agreement with experiments. Our findings may lead to many interesting applications, such as antireflection coating, polarization and spectral beam splitters, high-efficiency light absorbers, and surface plasmon couplers.

1,105 citations