scispace - formally typeset
Search or ask a question
Author

René Doyon

Bio: René Doyon is an academic researcher from Université de Montréal. The author has contributed to research in topics: Exoplanet & Planet. The author has an hindex of 74, co-authored 422 publications receiving 22926 citations. Previous affiliations of René Doyon include Particle Physics and Astronomy Research Council & National Institutes of Natural Sciences, Japan.


Papers
More filters
Journal ArticleDOI
28 Nov 2008-Science
TL;DR: High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units.
Abstract: Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

1,966 citations

Journal ArticleDOI
TL;DR: The James Webb Space Telescope (JWST) as discussed by the authors is a large (6.6 m), cold (<50 K), infrared-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point.
Abstract: The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.

1,372 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an acquisition strategy and reduction pipeline for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations.
Abstract: Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hourmore » long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.« less

1,182 citations

Journal ArticleDOI
TL;DR: Observations ofBeta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing, and fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions.
Abstract: The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

754 citations

Journal ArticleDOI
TL;DR: In this paper, an algorithm to construct an optimized reference PSF image from a set of reference images is presented. But this image is built as a linear combination of the reference images available and the coefficients of the combination are optimized inside multiple subsections of the image independently to minimize the residual noise within each subsection.
Abstract: Direct imaging of exoplanets is limited by bright quasi-static speckles in the point-spread function (PSF) of the central star. This limitation can be reduced by subtraction of reference PSF images. We have developed an algorithm to construct an optimized reference PSF image from a set of reference images. This image is built as a linear combination of the reference images available, and the coefficients of the combination are optimized inside multiple subsections of the image independently to minimize the residual noise within each subsection. The algorithm developed can be used with many high-contrast imaging observing strategies relying on PSF subtraction, such as angular differential imaging (ADI), roll subtraction, spectral differential imaging, and reference star observations. The performance of the algorithm is demonstrated for ADI data. It is shown that for this type of data the new algorithm provides a gain in sensitivity by up to a factor of 3 at small separation over the algorithm previously used by Marois and colleagues.

637 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Abstract: Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence and are key probes of the evolutionary histories of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field. One of the most recognizable features of galaxies along the Hubble sequence is the wide range in young stellar content and star formation activity. This variation in stellar content is part of the basis of the Hubble classification itself (Hubble 1926), and understanding its physical nature and origins is fundamental to understanding galaxy evolution in its broader context. This review deals with the global star formation properties of galaxies, the systematics of those properties along the Hubble sequence, and their implications for galactic evolution. I interpret “Hubble sequence” in this context very loosely, to encompass not only morphological type but other properties such as gas content, mass, bar structure, and dynamical environment, which can strongly influence the largescale star formation rate (SFR).

6,640 citations

Journal ArticleDOI
TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Abstract: Measurements of Hα, H I, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law over the full range of gas densities and star formation rates (SFRs) observed in galaxies. The disk-averaged SFRs and gas densities for the combined sample are well represented by a Schmidt law with index N = 1.4 ± 0.15. The Schmidt law provides a surprisingly tight parametrization of the global star formation law, extending over several orders of magnitude in SFR and gas density. An alternative formulation of the star formation law, in which the SFR is presumed to scale with the ratio of the gas density to the average orbital timescale, also fits the data very well. Both descriptions provide potentially useful "recipes" for modeling the SFR in numerical simulations of galaxy formation and evolution.

5,299 citations

Journal ArticleDOI
TL;DR: Starburst99 as mentioned in this paper is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation, which is an improved and extended version of the data set previously published by Leitherer & Heckman.
Abstract: Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are an improved and extended version of the data set previously published by Leitherer & Heckman. We have upgraded our code by implementing the latest set of stellar evolution models of the Geneva group and the model atmosphere grid compiled by Lejeune et al. Several predictions which were not included in the previous publication are shown here for the first time. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 106—109 yr. We also show the spectral energy distributions which are used to compute colors and other quantities. The full data set is available for retrieval at a Web site, which allows users to run specific models with nonstandard parameters as well. We also make the source code available to the community.

4,212 citations

Journal ArticleDOI
TL;DR: At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus as discussed by the authors.
Abstract: ▪ Abstract At luminosities above 1011 , infrared galaxies become the dominant population of extragalactic objects in the local Universe (z ≲ 0.3), being more numerous than optically selected starburst and Seyfert galaxies and quasi-stellar objects at comparable bolometric luminosity. The trigger for the intense infrared emission appears to be the strong interaction/merger of molecular gas-rich spirals, and the bulk of the infrared luminosity for all but the most luminous objects is due to dust heating from an intense starburst within giant molecular clouds. At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus. These ultraluminous infrared galaxies may represent an important stage in the formation of quasi-stellar objects and powerful radio galaxies. They may al...

2,911 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations