scispace - formally typeset
Search or ask a question
Author

René P. Schwarzenbach

Bio: René P. Schwarzenbach is an academic researcher from ETH Zurich. The author has contributed to research in topics: Sorption & Adsorption. The author has an hindex of 71, co-authored 155 publications receiving 17529 citations. Previous affiliations of René P. Schwarzenbach include Swiss Federal Institute of Aquatic Science and Technology & University of Minnesota.


Papers
More filters
Journal ArticleDOI
25 Aug 2006-Science
TL;DR: There are three scientific challenges in addressing water-quality problems caused by micropollutants, and usage and disposal strategies should aim to minimize introduction of critical pollutants into the aquatic environment.
Abstract: The increasing worldwide contamination of freshwater systems with thousands of industrial and natural chemical compounds is one of the key environmental problems facing humanity. Although most of these compounds are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Here we review three scientific challenges in addressing water-quality problems caused by such micropollutants. First, tools to assess the impact of these pollutants on aquatic life and human health must be further developed and refined. Second, cost-effective and appropriate remediation and water-treatment technologies must be explored and implemented. Third, usage and disposal strategies, coupled with the search for environmentally more benign products and processes, should aim to minimize introduction of critical pollutants into the aquatic environment.

2,951 citations

Journal ArticleDOI
TL;DR: In this paper, the main groups of aquatic contaminants, their effects on human health, and approaches to mitigate pollution of freshwater resources are reviewed, particularly on inorganic and organic micropollutants including toxic metals and metalloids as well as a large variety of synthetic organic chemicals.
Abstract: Water quality issues are a major challenge that humanity is facing in the twenty-first century. Here, we review the main groups of aquatic contaminants, their effects on human health, and approaches to mitigate pollution of freshwater resources. Emphasis is placed on chemical pollution, particularly on inorganic and organic micropollutants including toxic metals and metalloids as well as a large variety of synthetic organic chemicals. Some aspects of waterborne diseases and the urgent need for improved sanitation in developing countries are also discussed. The review addresses current scientific advances to cope with the great diversity of pollutants. It is organized along the different temporal and spatial scales of global water pollution. Persistent organic pollutants (POPs) have affected water systems on a global scale for more than five decades; during that time geogenic pollutants, mining operations, and hazardous waste sites have been the most relevant sources of long-term regional and local water pollution. Agricultural chemicals and wastewater sources exert shorter-term effects on regional to local scales.

1,407 citations

Journal ArticleDOI
TL;DR: The evaluation scheme presented bridges a gap between basic and environmental (bio)chemistry and provides insight into factors that control the magnitude of bulk isotope fractionation factors.
Abstract: Measuring stable isotope fractionation of carbon, hydrogen, and other elements by Compound Specific Isotope Analysis (CSIA) is a new, innovative approach to assess organic pollutant degradation in the environment. Central to this concept is the Rayleigh equation which relates degradation-induced decreases in concentrations directly to concomitant changes in bulk (= average over the whole compound) isotope ratios. The extent of in situ transformation may therefore be inferred from measured isotope ratios in field samples, provided that an appropriate enrichment factor (ebulk) is known. This ebulk value, however, is usually only valid for a specific compound and for specific degradation conditions. Therefore, a direct comparison of ebulk values for different compounds and for different types of reactions has in general not been feasible. In addition, it is often uncertain how robust and reproducible ebulk values are and how confidently they can be used to quantify contaminant degradation in the field. To im...

504 citations

Journal ArticleDOI
TL;DR: Electron accepting capacities of 13 different HS, determined by MER, strongly correlated with their C/H ratios and aromaticities and with previously published values, which, however, were a factor of 3 smaller due to methodological limitations.
Abstract: Two electrochemical methods to assess the redox properties of humic substances (HS) are presented: direct electrochemical reduction (DER) on glassy carbon working electrodes (WE) and mediated electrochemical reduction (MER) and oxidation (MEO) using organic radicals to facilitate electron transfer between HS and the WE. DER allows for continuous monitoring of electron and proton transfer to HS by chronocoulometry and automated acid titration, respectively, and of changes in bulk HS redox potential Eh. Leonardite Humic Acid (LHA) showed an H+/e− ratio of unity and a decrease in potential from Eh = +0.18 to −0.23 V upon transfer of 822 μmole- gLHA−1 at pH 7, consistent with quinones as major redox-active functional moieties in LHA. MER and MEO quantitatively detected electrons in LHA samples that were prereduced by DER to different extents. MER and MEO therefore accurately quantify the redox state of HS. Cyclic DER and O2-reoxidation revealed that electron transfer to LHA was largely reversible. However, LH...

471 citations


Cited by
More filters
Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Abstract: One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.

6,967 citations

Journal ArticleDOI
25 Aug 2006-Science
TL;DR: There are three scientific challenges in addressing water-quality problems caused by micropollutants, and usage and disposal strategies should aim to minimize introduction of critical pollutants into the aquatic environment.
Abstract: The increasing worldwide contamination of freshwater systems with thousands of industrial and natural chemical compounds is one of the key environmental problems facing humanity. Although most of these compounds are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Here we review three scientific challenges in addressing water-quality problems caused by such micropollutants. First, tools to assess the impact of these pollutants on aquatic life and human health must be further developed and refined. Second, cost-effective and appropriate remediation and water-treatment technologies must be explored and implemented. Third, usage and disposal strategies, coupled with the search for environmentally more benign products and processes, should aim to minimize introduction of critical pollutants into the aquatic environment.

2,951 citations

Book
01 Jan 1985
TL;DR: The first part of the book as mentioned in this paper is a general overview of the amount and general nature of dissolved organic carbon in natural waters, and the second part is a summary of the data that has accumulated from many disciplines over the last decade.
Abstract: This book is written as a reference on organic substances in natural waters and as a supplementary text for graduate students in water chemistry. The chapters address five topics: amount, origin, nature, geochemistry, and characterization of organic carbon. Of these topics, the main themes are the amount and nature of dissolved organic carbon in natural waters (mainly fresh water, although seawater is briefly discussed). It is hoped that the reader is familiar with organic chemistry, but it is not necessary. The first part of the book is a general overview of the amount and general nature of dissolved organic carbon. Over the past 10 years there has been an exponential increase in knowledge on organic substances in water, which is the result of money directed toward the research of organic compounds, of new methods of analysis (such as gas chromatography and mass spectrometry), and most importantly, the result of more people working in this field. Because of this exponential increase in knowledge, there is a need to pull together and summarize the data that has accumulated from many disciplines over the last decade.

2,803 citations

Journal ArticleDOI
TL;DR: Electro-Fenton (EF) Process 6585 4.2.1.
Abstract: 2.2. Fenton’s Chemistry 6575 2.2.1. Origins 6575 2.2.2. Fenton Process 6575 2.3. Photo-Fenton Process 6577 3. H2O2 Electrogeneration for Water Treatment 6577 3.1. Fundamentals 6578 3.2. Cathode Materials 6579 3.3. Divided Cells 6580 3.4. Undivided Cells 6583 4. Electro-Fenton (EF) Process 6585 4.1. Origins 6585 4.2. Fundamentals of EF for Water Remediation 6586 4.2.1. Cell Configuration 6586 4.2.2. Cathodic Fe2+ Regeneration 6586 4.2.3. Anodic Generation of Heterogeneous Hydroxyl Radical 6587

2,652 citations

Journal ArticleDOI
TL;DR: This book is dedicated to the memory of those who have served in the armed forces and their families during the conflicts of the twentieth century.

2,628 citations