scispace - formally typeset
Search or ask a question
Author

Renee Hackenmiller

Bio: Renee Hackenmiller is an academic researcher from Oregon Health & Science University. The author has contributed to research in topics: Haematopoiesis & Innate immune system. The author has an hindex of 7, co-authored 8 publications receiving 1886 citations. Previous affiliations of Renee Hackenmiller include University of Chicago & Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI
09 Feb 1996-Cell
TL;DR: Cell and tissues from Stat1(-1-1) mice were unresponsive to IFN, but remained responsive to all other cytokines tested, indicating that STAT1 appears to be specific for IFN pathways that are essential for viability in the face of otherwise innocuous pathogens.

1,554 citations

Journal ArticleDOI
TL;DR: It is shown that proBMP-4 is cleaved by furin in a sequential manner, and differential use of the upstream cleavage site could provide for tissue-specific regulation of B MP-4 activity and signaling range.
Abstract: Proteolytic maturation of proBMP-4 is required to generate an active signaling molecule. We show that proBMP-4 is cleaved by furin in a sequential manner. Cleavage at a consensus furin site adjacent to the mature ligand domain allows for subsequent cleavage at an upstream nonconsensus furin site within the prodomain. BMP-4 synthesized from precursor in which the upstream site is noncleavable is less active, signals at a shorter range, and accumulates at lower levels than does BMP-4 cleaved from native precursor. Conversely, BMP-4 cleaved from precursor in which both sites are rapidly cleaved is more active and signals over a greater range. Differential use of the upstream cleavage site could provide for tissue-specific regulation of BMP-4 activity and signaling range.

145 citations

Journal ArticleDOI
01 Sep 2000-Immunity
TL;DR: Increased cytokine responsiveness in the absence of Fes leads to abnormal myeloid proliferation and functional defects in the macrophage lineage.

73 citations

Journal ArticleDOI
TL;DR: It is reported that mice carrying a point mutation that prevents S2 processing show severe loss of BMP4 activity in some tissues, whereas other tissues that are sensitive to Bmp4 dosage, such as the limb, dorsal vertebrae and kidney, develop normally.
Abstract: ProBMP4 is initially cleaved at a site adjacent to the mature ligand (the S1 site) allowing for subsequent cleavage at an upstream (S2) site. Mature BMP4 synthesized from a precursor in which the S2 site cannot be cleaved remains in a complex with the prodomain that is targeted for lysosomal degradation, and is thus less active when overexpressed in Xenopus. Here we report that mice carrying a point mutation that prevents S2 processing show severe loss of BMP4 activity in some tissues, such as testes and germ cells, whereas other tissues that are sensitive to Bmp4 dosage, such as the limb, dorsal vertebrae and kidney, develop normally. In a haploinsufficient background, inability to cleave the S2 site leads to embryonic and postnatal lethality due to defects in multiple organ systems including the allantois, placental vasculature, ventral body wall, eye and heart. These data demonstrate that cleavage of the S2 site is essential for normal development and, more importantly, suggest that this site might be selectively cleaved in a tissue-specific fashion. In addition, these studies provide the first genetic evidence that BMP4 is required for dorsal vertebral fusion and closure of the ventral body wall.

64 citations

Journal ArticleDOI
TL;DR: It is reported that mice carrying a point mutation that prevents S2 processing show severe loss of BMP4 activity in some tissues, whereas other tissues that are sensitive to Bmp4 dosage, such as the limb, dorsal vertebrae and kidney, develop normally.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interFERons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.
Abstract: Interferons play key roles in mediating antiviral and antigrowth responses and in modulating immune response. The main signaling pathways are rapid and direct. They involve tyrosine phosphorylation and activation of signal transducers and activators of transcription factors by Janus tyrosine kinases at the cell membrane, followed by release of signal transducers and activators of transcription and their migration to the nucleus, where they induce the expression of the many gene products that determine the responses. Ancillary pathways are also activated by the interferons, but their effects on cell physiology are less clear. The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interferons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.

4,026 citations

Journal ArticleDOI
TL;DR: The current understanding of IFN‐γ ligand, receptor, ignal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophages function during infection are reviewed.
Abstract: Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.

3,589 citations

Journal ArticleDOI
TL;DR: Much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance.
Abstract: Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.

2,956 citations

Journal ArticleDOI
TL;DR: The signal transducer and activator of transcription (STAT) proteins are among the most well studied of the latent cytoplasmic signal-dependent transcription-factor pathways.
Abstract: Extracellular proteins bound to cell-surface receptors can change nuclear gene expression patterns in minutes, with far-reaching consequences for development, cell growth and homeostasis. The signal transducer and activator of transcription (STAT) proteins are among the most well studied of the latent cytoplasmic signal-dependent transcription-factor pathways. In addition to several roles in normal cell decisions, dysregulation of STAT function contributes to human disease, making the study of these proteins an important topic of current research.

2,720 citations

Journal ArticleDOI
26 Apr 2001-Nature
TL;DR: It is shown that lymphocytes and IFNγ collaborate to protect against development of carcinogen-induced sarcomas and spontaneous epithelial carcinomas and also to select for tumour cells with reduced immunogenicity, which explains the apparent paradox of tumour formation in immunologically intact individuals.
Abstract: Lymphocytes were originally thought to form the basis of a 'cancer immunosurveillance' process that protects immunocompetent hosts against primary tumour development, but this idea was largely abandoned when no differences in primary tumour development were found between athymic nude mice and syngeneic wild-type mice However, subsequent observations that nude mice do not completely lack functional T cells and that two components of the immune system-IFNgamma and perforin-help to prevent tumour formation in mice have led to renewed interest in a tumour-suppressor role for the immune response Here we show that lymphocytes and IFNgamma collaborate to protect against development of carcinogen-induced sarcomas and spontaneous epithelial carcinomas and also to select for tumour cells with reduced immunogenicity The immune response thus functions as an effective extrinsic tumour-suppressor system However, this process also leads to the immunoselection of tumour cells that are more capable of surviving in an immunocompetent host, which explains the apparent paradox of tumour formation in immunologically intact individuals

2,673 citations