scispace - formally typeset
Search or ask a question
Author

Renquan Lu

Bio: Renquan Lu is an academic researcher from Guangdong University of Technology. The author has contributed to research in topics: Control theory & Nonlinear system. The author has an hindex of 39, co-authored 179 publications receiving 4728 citations. Previous affiliations of Renquan Lu include Hangzhou Dianzi University & Huaibei Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: The adaptive backstepping control method and Lyapunov stability theory are used to prove the proposed controller can ensure all the signals in the systems are semiglobally uniformly ultimately bounded, and the output of the systems can track the reference signal closely.
Abstract: In this paper, the adaptive neural network (NN) tracking control problem is addressed for robot manipulators subject to dead-zone input. The control objective is to design an adaptive NN controller to guarantee the stability of the systems and obtain good performance. Different from the existing results, which used NN to approximate the nonlinearities directly, NNs are employed to identify the originally designed virtual control signals with unknown nonlinear items in this paper. Moreover, a sequence of virtual control signals and real controller are designed. The adaptive backstepping control method and Lyapunov stability theory are used to prove the proposed controller can ensure all the signals in the systems are semiglobally uniformly ultimately bounded, and the output of the systems can track the reference signal closely. Finally, the proposed adaptive control strategy is applied to the Puma 560 robot manipulator to demonstrate its effectiveness.

276 citations

Journal ArticleDOI
TL;DR: A novel distributed event-triggered communication protocol based on state estimates of neighboring agents is proposed to solve the consensus problem of the leader-following systems and can greatly reduce the communication load of multiagent networks.
Abstract: In this paper, the leader-following consensus problem of high-order multiagent systems via event-triggered control is discussed. A novel distributed event-triggered communication protocol based on state estimates of neighboring agents is proposed to solve the consensus problem of the leader-following systems. We first investigate the consensus problem in a fixed topology, and then extend to the switching topologies. State estimates in fixed topology are only updated when the trigger condition is satisfied. However, state estimates in switching topologies are renewed with two cases: 1) the communication topology is switched or 2) the trigger condition is satisfied. Clearly, compared to continuous-time interaction, this protocol can greatly reduce the communication load of multiagent networks. Besides, the event-triggering function is constructed based on the local information and a new event-triggered rule is given. Moreover, “Zeno behavior” can be excluded. Finally, we give two examples to validate the feasibility and efficiency of our approach.

269 citations

Journal ArticleDOI
TL;DR: The Round-Robin protocol is introduced to overcome the channel capacity constraint among sensor nodes, and the multiplicative noise is employed to model the channel fading.
Abstract: This paper considers finite-time distributed state estimation for discrete-time nonlinear systems over sensor networks. The Round-Robin protocol is introduced to overcome the channel capacity constraint among sensor nodes, and the multiplicative noise is employed to model the channel fading. In order to improve the performance of the estimator under the situation, where the transmission resources are limited, fading channels with different stochastic properties are used in each round by allocating the resources. Sufficient conditions of the average stochastic finite-time boundedness and the average stochastic finite-time stability for the estimation error system are derived on the basis of the periodic system analysis method and Lyapunov approach, respectively. According to the linear matrix inequality approach, the estimator gains are designed. Finally, the effectiveness of the developed results are illustrated by a numerical example.

238 citations

Journal ArticleDOI
Xiao-Meng Li1, Qi Zhou1, Panshuo Li1, Hongyi Li1, Renquan Lu1 
TL;DR: The main objective of this article is to design a controller such that, under randomly occurring FDIAs and admissible parameter uncertainties, the MASs achieve consensus by utilizing stochastic analysis method.
Abstract: In this article, the event-triggered security consensus problem is studied for time-varying multiagent systems (MASs) against false data-injection attacks (FDIAs) and parameter uncertainties over a given finite horizon. In the process of information transmission, the malicious attacker tries to inject false signals to destroy consensus by compromising the integrity of measurements and control signals. The randomly occurring stealthy FDIAs on sensors and actuators are modeled by the Bernoulli processes. In order to reduce the unnecessary utilization of communication resources, an event-triggered control mechanism with state-dependent threshold is adopted to update the control input signal. The main objective of this article is to design a controller such that, under randomly occurring FDIAs and admissible parameter uncertainties, the MASs achieve consensus. By utilizing stochastic analysis method, two sufficient criteria are derived to ensure that the prescribed $H_{\infty }$ consensus performance can be achieved. Then, the desired controller gains are derived by solving recursive linear matrix inequalities. Simulation results are presented to illustrate the effectiveness and applicability of the proposed control method.

234 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of state estimation for a class of discrete-time stochastic complex networks with a constrained and randomly varying coupling and uncertain measurements with the help of a Markov chain and a logarithmic quantizer.
Abstract: This paper addresses the problem of state estimation for a class of discrete-time stochastic complex networks with a constrained and randomly varying coupling and uncertain measurements. The randomly varying coupling is governed by a Markov chain, and the capacity constraint is handled by introducing a logarithmic quantizer. The uncertainty of measurements is modeled by a multiplicative noise. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the coupling information, and an augmented estimation error system is obtained using the Kronecker product. Sufficient conditions are established, which guarantee that the estimation error system is stochastically stable and achieves the strict ( $Q,S,R$ )- $\gamma $ -dissipativity. Then, the estimator gains are derived using the linear matrix inequality method. Finally, a numerical example is provided to illustrate the effectiveness of the proposed new design techniques.

221 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

01 Jan 2005
TL;DR: In this paper, a number of quantized feedback design problems for linear systems were studied and the authors showed that the classical sector bound approach is non-conservative for studying these design problems.
Abstract: This paper studies a number of quantized feedback design problems for linear systems. We consider the case where quantizers are static (memoryless). The common aim of these design problems is to stabilize the given system or to achieve certain performance with the coarsest quantization density. Our main discovery is that the classical sector bound approach is nonconservative for studying these design problems. Consequently, we are able to convert many quantized feedback design problems to well-known robust control problems with sector bound uncertainties. In particular, we derive the coarsest quantization densities for stabilization for multiple-input-multiple-output systems in both state feedback and output feedback cases; and we also derive conditions for quantized feedback control for quadratic cost and H/sub /spl infin// performances.

1,292 citations

Journal ArticleDOI
Junfei Qiu1, Qihui Wu1, Guoru Ding1, Yuhua Xu1, Shuo Feng1 
TL;DR: A literature survey of the latest advances in researches on machine learning for big data processing finds some promising learning methods in recent studies, such as representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and kernel-based learning.
Abstract: There is no doubt that big data are now rapidly expanding in all science and engineering domains. While the potential of these massive data is undoubtedly significant, fully making sense of them requires new ways of thinking and novel learning techniques to address the various challenges. In this paper, we present a literature survey of the latest advances in researches on machine learning for big data processing. First, we review the machine learning techniques and highlight some promising learning methods in recent studies, such as representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and kernel-based learning. Next, we focus on the analysis and discussions about the challenges and possible solutions of machine learning for big data. Following that, we investigate the close connections of machine learning with signal processing techniques for big data processing. Finally, we outline several open issues and research trends.

636 citations

Journal ArticleDOI
TL;DR: This paper studies the problem of fuzzy adaptive event-triggered control for a class of pure-feedback nonlinear systems, which contain unknown smooth functions and unmeasured states, and relaxes the restrictive condition that the partial derivatives of system functions need to be known for pure- feedback non linear systems.
Abstract: This paper studies the problem of fuzzy adaptive event-triggered control for a class of pure-feedback nonlinear systems, which contain unknown smooth functions and unmeasured states. Fuzzy logic systems are adopted to approximate unknown smooth functions and a fuzzy state observer is designed to estimate unmeasured states. Via the event-triggered control technique, the control signal of the fixed threshold strategy is obtained. By converting the tracking error into a new virtual error variable, an observer-based fuzzy adaptive event-triggered prescribed performance control strategy is designed. The key advantage is that the proposed method does not require a $priori$ knowledge of partial derivatives of system functions, i.e., it relaxes the restrictive condition that the partial derivatives of system functions need to be known for pure-feedback nonlinear systems. Simulation results confirm the efficiency of the proposed method.

408 citations

Journal ArticleDOI
TL;DR: The finite-time control problem of the nonlinear system with dead-zone is solved and the adaptive backstepping method is proposed, and the effectiveness of the proposed scheme is verified via some simulation results.

405 citations