scispace - formally typeset
Search or ask a question
Author

Renren Deng

Bio: Renren Deng is an academic researcher from Zhejiang University. The author has contributed to research in topics: Photon upconversion & Medicine. The author has an hindex of 18, co-authored 38 publications receiving 6725 citations. Previous affiliations of Renren Deng include Nanjing University of Posts and Telecommunications & University of Cambridge.

Papers
More filters
Journal ArticleDOI
TL;DR: By rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of Lanthanide activators without long-lived intermediary energy states.
Abstract: Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.

1,528 citations

Journal ArticleDOI
TL;DR: A fundamental principle to design organic molecules with extended lifetimes of excited states is outlined, providing a major step forward in expanding the scope of organic phosphorescence applications.
Abstract: The control of the emission properties of synthetic organic molecules through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colours, high quantum efficiencies and efficient energy/charge transfer processes. However, the task of generating excited states with long lifetimes has been met with limited success, owing to the ultrafast deactivation of the highly active excited states. Here, we present a design rule that can be used to tune the emission lifetime of a wide range of luminescent organic molecules, based on effective stabilization of triplet excited states through strong coupling in H-aggregated molecules. Our experimental data revealed that luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores, can be realized under ambient conditions. These results outline a fundamental principle to design organic molecules with extended lifetimes of excited states, providing a major step forward in expanding the scope of organic phosphorescence applications.

1,190 citations

Journal ArticleDOI
TL;DR: The ability to monitor the glutathione concentration intracellularly may enable rational design of a convenient platform for targeted drug and gene delivery.
Abstract: We report a novel design, based on a combination of lanthanide-doped upconversion nanoparticles and manganese dioxide nanosheets, for rapid, selective detection of glutathione in aqueous solutions and living cells. In this approach, manganese dioxide (MnO2) nanosheets formed on the surface of nanoparticles serve as an efficient quencher for upconverted luminescence. The luminescence can be turned on by introducing glutathione that reduces MnO2 into Mn2+. The ability to monitor the glutathione concentration intracellularly may enable rational design of a convenient platform for targeted drug and gene delivery.

818 citations

Journal ArticleDOI
TL;DR: This work demonstrates a convenient, versatile approach to dynamically fine-tuning emission in the full colour range from a new class of core-shell upconversion nanocrystals by adjusting the pulse width of infrared laser beams and suggests that the unprecedented colour tunability from these nanocry crystals is governed by a non-steady-state upconverting process.
Abstract: Developing light-harvesting materials with tunable emission colours has always been at the forefront of colour display technologies. The variation in materials composition, phase and structure can provide a useful tool for producing a wide range of emission colours, but controlling the colour gamut in a material with a fixed composition remains a daunting challenge. Here, we demonstrate a convenient, versatile approach to dynamically fine-tuning emission in the full colour range from a new class of core-shell upconversion nanocrystals by adjusting the pulse width of infrared laser beams. Our mechanistic investigations suggest that the unprecedented colour tunability from these nanocrystals is governed by a non-steady-state upconversion process. These findings provide keen insights into controlling energy transfer in out-of-equilibrium optical processes, while offering the possibility for the construction of true three-dimensional, full-colour display systems with high spatial resolution and locally addressable colour gamut.

777 citations

Journal ArticleDOI
TL;DR: The core-shell design enabled high-concentration doping of Nd(3+) (~0 mol %) in the shell layer and thus markedly enhanced the upconversion emission from the activators, providing highly attractive luminescent biomarkers for bioimaging without autofluorescence and concern of overheating.
Abstract: A new type of core–shell upconversion nanoparticles which can be effectively excited at 795 nm has been designed and synthesized through spatially confined doping of neodymium (Nd3+) ions. The use of Nd3+ ions as sensitizers facilitates the energy transfer and photon upconversion of a series of lanthanide activators (Er3+, Tm3+, and Ho3+) at a biocompatible excitation wavelength (795 nm) and also significantly minimizes the overheating problem associated with conventional 980 nm excitation. Importantly, the core–shell design enabled high-concentration doping of Nd3+ (∼20 mol %) in the shell layer and thus markedly enhanced the upconversion emission from the activators, providing highly attractive luminescent biomarkers for bioimaging without autofluorescence and concern of overheating.

617 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China.
Abstract: Yuming Yang,†,§ Qiang Zhao,‡,§ Wei Feng,† and Fuyou Li*,† †Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China ‡Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China.

1,999 citations

Journal ArticleDOI
TL;DR: Applications in Theranostics Guanying Chen,*,†,‡ Hailong Qiu,*,‡ and Xiaoyuan Chen.
Abstract: Applications in Theranostics Guanying Chen,*,†,‡ Hailong Qiu,†,‡ Paras N. Prasad,*,‡,§ and Xiaoyuan Chen* †School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China ‡Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260, United States Department of Chemistry, Korea University, Seoul 136-701, Korea Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-2281, United States

1,994 citations

Journal ArticleDOI

1,989 citations

Journal ArticleDOI
TL;DR: A controlled encapsulation strategy is reported that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8).
Abstract: Microporous metal–organic frameworks (MOFs) that display permanent porosity show great promise for a myriad of purposes. The potential applications of MOFs can be developed further and extended by encapsulating various functional species (for example, nanoparticles) within the frameworks. However, despite increasing numbers of reports of nanoparticle/MOF composites, simultaneously to control the size, composition, dispersed nature, spatial distribution and confinement of the incorporated nanoparticles within MOF matrices remains a significant challenge. Here, we report a controlled encapsulation strategy that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8). The incorporated nanoparticles are well dispersed and fully confined within the ZIF-8 crystals. This strategy also allows the controlled incorporation of multiple nanoparticles within each ZIF-8 crystallite. The as-prepared nanoparticle/ZIF-8 composites exhibit active (catalytic, magnetic and optical) properties that derive from the nanoparticles as well as molecular sieving and orientation effects that originate from the framework material.

1,714 citations

Journal ArticleDOI
Jing Zhou1, Qian Liu1, Wei Feng1, Yun Sun1, Fuyou Li1 

1,679 citations