scispace - formally typeset
Search or ask a question
Author

Rens Masselink

Bio: Rens Masselink is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Sediment & Surface runoff. The author has an hindex of 13, co-authored 21 publications receiving 739 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A short review of the State-of-the-Art of the connectivity concept is provided, from which it is concluded that scientists have been struggling to find a way to quantify connectivity so far.

180 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored sediment connectivity in response to sequences of rainfall events and found that feedback between erosion and deposition are more important for certain landscape morphologies than for others: rolling or V-shaped catchments than from dissected or stepped landscapes.
Abstract: Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures

141 citations

Journal ArticleDOI
TL;DR: This review evaluates how a connectivity-based approach has generated new understanding of structural-functional relationships that characterise complex systems and proposes a ‘common toolbox’ underpinned by network-based approaches that can advance connectivity studies by overcoming existing constraints.
Abstract: In recent years, parallel developments in disparate disciplines have focused on what has come to be termed connectivity; a concept used in understanding and describing complex systems. Conceptualisations and operationalisations of connectivity have evolved largely within their disciplinary boundaries, yet similarities in this concept and its application among disciplines are evident. However, any implementation of the concept of connectivity carries with it both ontological and epistemological constraints, which leads us to ask if there is one type or set of approach(es) to connectivity that might be applied to all disciplines. In this review we explore four ontological and epistemological challenges in using connectivity to understand complex systems from the standpoint of widely different disciplines. These are: (i) defining the fundamental unit for the study of connectivity; (ii) separating structural connectivity from functional connectivity; (iii) understanding emergent behaviour; and (iv) measuring connectivity. We draw upon discipline-specific insights from Computational Neuroscience, Ecology, Geomorphology, Neuroscience, Social Network Science and Systems Biology to explore the use of connectivity among these disciplines. We evaluate how a connectivity-based approach has generated new understanding of structural-functional relationships that characterise complex systems and propose a ‘common toolbox’ underpinned by network-based approaches that can advance connectivity studies by overcoming existing constraints.

108 citations

Journal ArticleDOI
TL;DR: In this article, the authors used existing data to assess governing factors of connectivity, and how these change over time, using a linear model for discharge and suspended-sediment yield.
Abstract: Knowledge about connectivity and what affects it, through space and time, is needed for taking appropriate action at the right place and/or time by stakeholders. Various conceptual frameworks for hydrological and sediment connectivity have been developed in recent years. For most of these frameworks, the objective was to conceptualise connectivity, not necessarily to infer it from measurements. Studies focussing on measurements of connectivity have so far not been done often. Because of lack of data on connectivity, few real-world data have been used in recent connectivity modelling studies. The aim of this study was to demonstrate that existing data can be used to assess governing factors of connectivity, and how these change over time. Data from three catchments in Navarre, Northern Spain, were used to assess factors that influence hydrologic and sediment connectivity. These factors were used as components in a linear model for discharge and suspended-sediment yield. Three components of connectivity were distinguished: topographical, biological and soil. Changes in the topographical component for the studied periods were considered relatively small, and, therefore, kept constant. Changes in the biological component were determined using the Normalised Difference Vegetation Index. Changes in the soil component were assessed using an Antecedent Precipitation Index. Nash–Sutcliffe model efficiency coefficients were between 0·49 through 0·62 for the discharge models and between 0·23 through 0·3 for the sediment-yield models. We recommend applying the model at smaller spatial scales than catchment scale to minimise the lumping of spatial variability in the components. Copyright © 2016 John Wiley & Sons, Ltd.

78 citations

Journal ArticleDOI
30 Jun 2017
TL;DR: In this paper, two contrasting conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method using a 15-year period of measured sediment output at the catchment scale, and the results showed that low intensity events do not contribute any sediment from the hillslopes to the channel in the Latxaga catchment.
Abstract: Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter no sediment transport from the hillslope to the channel was detected. To test the implication of the REO results at the catchment scale, two contrasting conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. The RF method was applied using a 15-year period of measured sediment output at the catchment scale. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the amount of sediment exported during large events. Both REO tracers and RF method showed that low intensity events do not contribute any sediments from the hillslopes to the channel in the Latxaga catchment. Sediment dynamics are dominated by sediment mobilisation during large (high intensity) events. Sediments are for a large part exported during those events, but the system shows a memory of the occurrence of these large events, suggesting that large amounts of sediments are deposited in and near the channel after these events. These sediments are gradually removed by small events. To better understand the delivery of sediments to the channel and how large and small events influence each other more field data on hillslope-channel connectivity and within-channel sediment dynamics is necessary.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

01 Jan 2012

3,692 citations

01 Jan 2016
TL;DR: The remote sensing and image interpretation is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading remote sensing and image interpretation. As you may know, people have look hundreds times for their favorite novels like this remote sensing and image interpretation, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. remote sensing and image interpretation is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the remote sensing and image interpretation is universally compatible with any devices to read.

1,802 citations