scispace - formally typeset
Search or ask a question
Author

Rhoda Afriyie Mensah

Bio: Rhoda Afriyie Mensah is an academic researcher from Nanjing University of Science and Technology. The author has contributed to research in topics: Materials science & Flammability. The author has an hindex of 8, co-authored 17 publications receiving 133 citations.

Papers
More filters
Journal ArticleDOI
27 Mar 2021
TL;DR: In this article, a review of the state-of-the-art technologies for the adoption of the circular economy concept in biocomposite development is presented, highlighting the opportunities and challenges pertaining to the implementation of CE have been discussed in detail.
Abstract: Biocomposites being environmentally-friendly alternative to synthetic composites are gaining increasing demand for various applications. Hence, biocomposite development should be integrated within a circular economy (CE) model to ensure a sustainable production that is simultaneously innocuous towards the environment. This review presents an overview of the state-of-the-art technologies for the adoption of the CE concept in biocomposite development. The study outlined the properties, environmental and economic impacts of biocomposites. A critical review of the life-cycle assessment of biocomposite for evaluating greenhouse gas emissions and carbon footprints was conducted. In addition, the opportunities and challenges pertaining to the implementation of CE have been discussed in detail. Recycling and utilisation of bio-based constituents were identified as the critical factors in embracing CE. Therefore, the development of innovative recycling technologies and an enhanced use of novel biocomposite constituents could lead to a reduction in material waste and environmental footprints. This article is one of the first studies to review the circularity of biocomposites in detail that will stimulate further research in enhancing the sustainability of these polymeric materials.

74 citations

Journal ArticleDOI
08 Jul 2020-Polymers
TL;DR: The effects of a wide variety of carbon-based material addition on reaction-to-fire of the polymer Composites are reviewed and the focus is dedicated to biochar-based reinforcements for use in flame retardant polymer composites.
Abstract: Carbon based fillers have attracted a great deal of interest in polymer composites because of their ability to beneficially alter properties at low filler concentration, good interfacial bonding with polymer, availability in different forms, etc. The property alteration of polymer composites makes them versatile for applications in various fields, such as constructions, microelectronics, biomedical, and so on. Devastations due to building fire stress the importance of flame-retardant polymer composites, since they are directly related to human life conservation and safety. Thus, in this review, the significance of carbon-based flame-retardants for polymers is introduced. The effects of a wide variety of carbon-based material addition (such as fullerene, CNTs, graphene, graphite, and so on) on reaction-to-fire of the polymer composites are reviewed and the focus is dedicated to biochar-based reinforcements for use in flame retardant polymer composites. Additionally, the most widely used flammability measuring techniques for polymeric composites are presented. Finally, the key factors and different methods that are used for property enhancement are concluded and the scope for future work is discussed.

42 citations

Journal ArticleDOI
TL;DR: In this article, a high-fitting degree was obtained for isothermal and non-isothermal DSC experiments of cellulose nitrate, and the model corresponding to isothermal conditions was f(α) = 4(1 − α)[−ln( 1 − α)]3/4, while for nonisothermal conditions the model was identified as f( α) = (1 −α)3.

41 citations

Journal ArticleDOI
05 Jan 2020-Polymers
TL;DR: It can be inferred that ANFIS can handle the non-linearities in flammability modeling, making it apt as a modeling technique for accurate and effective flammable assessments.
Abstract: The fire behavior of materials is usually modeled on the basis of fire physics and material composition. However, significant strides have been made recently in applying soft computing methods such as artificial intelligence in flammability studies. In this paper, multiple linear regression (MLR) was employed to test the degree of non-linearities in flammability parameter modeling by assessing the linear relationship between sample mass, heating rate, heat release capacity (HRC) and total heat release (THR). Adaptive neuro-fuzzy inference system (ANFIS) was then adopted to predict the HRC and THR of the extruded polystyrene measured from microscale combustion calorimetry experiments. The ANFIS models presented excellent predictions, showing very low mean training and testing errors as well as reasonable agreements between experimental and predicted datasets. Hence, it can be inferred that ANFIS can handle the non-linearities in flammability modeling, making it apt as a modeling technique for accurate and effective flammability assessments.

38 citations

Journal ArticleDOI
TL;DR: In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources.
Abstract: Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However, its high flammability and rapid flame spread pose dangers for certain applications. Therefore, different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy. In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources. The FR additives are classified in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron, and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature, inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on implementing strategies that could help incorporate flame retardancy in the circular economy model.

37 citations


Cited by
More filters
01 May 2010
TL;DR: It was found that the constructed RBF exhibited a high performance than MLP, ANFIS and MR for predicting S%.
Abstract: Research highlights? The use of multiple regression (MR), artificial neural network (ANN) and artificial neuro-fuzzy inference system (ANFIS) models, for the prediction of swell percent of soils, was described and compared. ? However the accuracies of ANN and ANFIS models may be evaluated relatively similar, it is shown that the constructed ANN models of RBF and MLP exhibit a high performance than ANFIS and multiple regression for predicting swell percent of clays. ? The performance comparison showed that the soft computing system is a good tool for minimizing the uncertainties in the soil engineering projects. ? The use of soft computing will also may provide new approaches and methodologies, and minimize the potential inconsistency of correlations. In the recent years, new techniques such as; artificial neural networks and fuzzy inference systems were employed for developing of the predictive models to estimate the needed parameters. Soft computing techniques are now being used as alternate statistical tool. Determination of swell potential of soil is difficult, expensive, time consuming and involves destructive tests. In this paper, use of MLP and RBF functions of ANN (artificial neural networks), ANFIS (adaptive neuro-fuzzy inference system) for prediction of S% (swell percent) of soil was described, and compared with the traditional statistical model of MR (multiple regression). However the accuracies of ANN and ANFIS models may be evaluated relatively similar. It was found that the constructed RBF exhibited a high performance than MLP, ANFIS and MR for predicting S%. The performance comparison showed that the soft computing system is a good tool for minimizing the uncertainties in the soil engineering projects. The use of soft computing will also may provide new approaches and methodologies, and minimize the potential inconsistency of correlations.

364 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art of PA-based flame retardants for natural fabrics such as cotton and wool is discussed with respect to the concentration of PA, pH of the coating solution, temperature, and preparation methods.

94 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF).
Abstract: This investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.

70 citations

Journal Article
TL;DR: In this paper, the synergistic effects of ammonium polyphosphate (APP) and nano-SiO2 on thermal stability and flame retardancy of wood fiber-high density polyethylene composites were investigated.

64 citations

Journal ArticleDOI
TL;DR: An overview of the latest knowledge of different natural and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented in this paper , which discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects.
Abstract: Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. • Use of biopolymers has emerged as a new paradigm of the ecological conservation. • Biopolymeric composites are easily degraded under the possible source of degraded environment. • Biopolymers have found their applications in biomedical, food, electronics, cosmetics and other emerging fields. • Further understanding on their mode of action through this comprehensive review will imparts knowledge.

64 citations