scispace - formally typeset
Search or ask a question
Author

Ričardas Buividas

Bio: Ričardas Buividas is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Femtosecond & Laser. The author has an hindex of 17, co-authored 36 publications receiving 1722 citations. Previous affiliations of Ričardas Buividas include Australian National Fabrication Facility & Queensland University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer and emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Abstract: Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

835 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review of ripple formation mechanisms is presented, discussed, and formation conjectures are presented, and it is shown that formation of plasma at subcritical or critical densities on the surface and in the bulk specific to the high-intensity ultra-short laser pulses has to be considered to account for the experimental observations.

234 citations

Journal ArticleDOI
TL;DR: The lossy nature of plasmonic wave due to absorption is shown to become an advantage for scaling-up a large area surface nanotexturing of transparent dielectrics and semiconductors by a self-organized sub-wavelength energy deposition leading to an ablation pattern—ripples—using this plAsmonic nano-printing.
Abstract: The lossy nature of plasmonic wave due to absorption is shown to become an advantage for scaling-up a large area surface nanotexturing of transparent dielectrics and semiconductors by a self-organized sub-wavelength energy deposition leading to an ablation pattern—ripples—using this plasmonic nano-printing. Irreversible nanoscale modifications are delivered by surface plasmon polariton (SPP) using: (i) fast scan and (ii) cylindrical focusing of femtosecond laser pulses for a high patterning throughput. The mechanism of ripple formation on ZnS dielectric is experimentally proven to occur via surface wave at the substrate–plasma interface. The line focusing increase the ordering quality of ripples and facilitates fabrication over wafer-sized areas within a practical time span. Nanoprinting using SPP is expected to open new applications in photo-catalysis, tribology, and solar light harvesting via localized energy deposition rather scattering used in photonic and sensing applications based on re-scattering of SPP modes into far-field modes. Femtosecond laser pulses focused onto a dielectric induce ripples on its surface that are useful for photovoltaic and sensing applications. Light-driven excitation of surface charge waves—plasmons—achieves light localization on surfaces down to the deep-subwavelength nanoscale. Now, Hong-Bo Sun of Jilin University in China and co-workers from China and Australia have used surface plasmon polaritons to create permanent surface modifications whose period is smaller than the laser wavelength. They achieved this by using a cylindrical lens to create a line focus for near-infrared ultrashort laser pulses on silicon and zinc sulfide surfaces. This nanoprinting technique is well suited for texturing large areas on a wafer scale, since the patterning speed is determined simply by the repetition rate of the laser used. Potential applications include enhanced light harvesting for solar cells and improved photocatalysis.

165 citations

Journal ArticleDOI
TL;DR: In this paper, a gold-coated femtosecond laser nanostructured sapphire surface was used to detect taggants in explosives, which can undertake as part of an integrated security or investigative mission.
Abstract: A novel gold coated femtosecond laser nanostructured sapphire surface – an “optical nose” – based on surface-enhanced Raman spectroscopy (SERS) for detecting vapours of explosive substances was investigated. Four different nitroaromatic vapours at room temperature were tested. Sensor responses were unambiguous and showed response in the range of 0.05–15 μM at 25 °C. The laser fabricated substrate nanostructures produced up to an eight-fold increase in Raman signal over that observed on the unstructured portions of the substrate. This work demonstrates a simple sensing system that is compatible with commercial manufacturing practices to detect taggants in explosives which can undertake as part of an integrated security or investigative mission.

112 citations

Journal Article
TL;DR: A novel gold coated femtosecond laser nanostructured sapphire surface based on surface-enhanced Raman spectroscopy (SERS) for detecting vapours of explosive substances was investigated and demonstrates a simple sensing system that is compatible with commercial manufacturing practices to detect taggants in explosives.
Abstract: A novel gold coated femtosecond laser nanostructured sapphire surface - an “optical nose” - based on surface-enhanced Raman spectroscopy (SERS) for detecting vapours of explosive substances was investigated. Four different nitroaromatic vapours at room temperature were tested. Sensor responses were unambiguous and showed response in the range of 0.05-15 µM at 25 °C. The laser fabricated substrate nanostructures produced up to an eight-fold increase in Raman signal over that observed on the unstructured portions of the substrate. This work demonstrates a simple sensing system that is compatible with commercial manufacturing practices to detect taggants in explosives which can undertake as part of an integrated security or investigative mission.

110 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer and emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Abstract: Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

835 citations

Journal ArticleDOI
TL;DR: In this article, the current state in the field of laser-induced periodic surface structures (LIPSS) is reviewed, and the formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments.
Abstract: Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed.

607 citations

Journal Article
TL;DR: The authors do a superb job of selecting the material for each chapter and explaining the material with equations and narrative in an easily digestible manner, and this textbook is an excellent resource for a research scientist and for a teacher.
Abstract: Physical Biology of the Cell, 2nd Edition, is a textbook that focuses on the application of physical principles to understanding biological systems. The subject matter of the text is organized according to common physical principles that govern biological processes rather than in relation to the biological processes themselves, as is common for most biology and cell biology textbooks. Topics covered in the book span a broad range of interests, including electrostatics, molecular interactions, molecular motors and the cytoskeleton, and membranes. Each chapter features color figures, derived equations with relevant examples, and problem sets at the chapter’s conclusion. The problem sets at the end of the chapters are expanded from the first edition. Further, the second edition includes two new chapters, one on light and pattern formation, and another on the use of computation in exploring biological problems. Additional student and instructor resources are also available online. The primary audience for the textbook could include advanced undergraduate students or first-year graduate students. While the textbook may be best suited for a biophysics course, it could also be used as a primary or supplementary text for teaching cellular and molecular biology. As a teaching tool for cellular and molecular biology, the many examples featured throughout the text could easily be employed to assist students in learning the principles of how a cellular or molecular system functions. A basic level of mathematical proficiency would be required of the student. While this textbook could be an excellent resource for many courses, there are several topics commonly covered in biochemistry classes, such the glycolytic pathway, that are featured in the book but in different contexts than many widely used biochemistry texts. For a biophysics course that is heavily focused on techniques, individual references that discuss the specific techniques in detail would be more suitable than this book. Of course, any instructor seeking to use this textbook should be aware of its content before making a selection. This textbook is an excellent resource, both for a research scientist and for a teacher. The authors do a superb job of selecting the material for each chapter and explaining the material with equations and narrative in an easily digestible manner. Readers who enjoy this book may also enjoy Molecular Driving Forces by Dill and Bromberg, which gives excellent treatment of similar concepts.

491 citations