scispace - formally typeset
Search or ask a question
Author

Ricardo Florido

Bio: Ricardo Florido is an academic researcher from University of Las Palmas de Gran Canaria. The author has contributed to research in topics: Radiative transfer & Plasma. The author has an hindex of 15, co-authored 65 publications receiving 728 citations. Previous affiliations of Ricardo Florido include Technical University of Madrid & University of La Laguna.


Papers
More filters
Journal ArticleDOI
TL;DR: The 4th Non-LTE Code Comparison Workshop as discussed by the authors was held in December 2005 to test the NLTE population kinetics codes, both steady-state and time-dependent cases for C, Ar, Fe, Sn, Xe, and Au plasmas.

104 citations

Journal ArticleDOI
TL;DR: A number of results are presented which show that the ABAKO compares well with customized models and simulations of ion population distribution, and the utility of ABA KO for plasma spectroscopic applications is also outlined.
Abstract: We discuss the modeling of population kinetics of nonequilibrium steady-state plasmas using a collisional-radiative model and code based on analytical rates (ABAKO). ABAKO can be applied to low-to-high Z ions for a wide range of laboratory plasma conditions: coronal, local thermodynamic equilibrium or nonlocal thermodynamic equilibrium, and optically thin or thick plasmas. ABAKO combines a set of analytical approximations to atomic rates, which yield substantial savings in computer running time, still comparing well with more elaborate codes and experimental data. A simple approximation to calculate the electron capture cross section in terms of the collisional excitation cross section has been adapted to work in a detailed-configuration-accounting approach, thus allowing autoionizing states to be explicitly included in the kinetics in a fast and efficient way. Radiation transport effects in the atomic kinetics due to line trapping in the plasma are taken into account via geometry-dependent escape factors. Since the kinetics problem often involves very large sparse matrices, an iterative method is used to perform the matrix inversion. In order to illustrate the capabilities of the model, we present a number of results which show that the ABAKO compares well with customized models and simulations of ion population distribution. The utility of ABAKO for plasma spectroscopic applications is also outlined.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the nanosecond laser-plasma processes to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT.
Abstract: Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

57 citations

Journal ArticleDOI
TL;DR: In this paper, a flexible computation package for calculating radiative properties for low and high Z optically thin and thick plasmas, both under local thermodynamic and non-local thermodynamic equilibrium conditions, named RAPCAL is presented.
Abstract: Radiative properties are fundamental for plasma diagnostics and hydro-simulations. For this reason, there is a high interest in their determination and they are a current topic of investigation both in astrophysics and inertial fusion confinement research. In this work a flexible computation package for calculating radiative properties for low and high Z optically thin and thick plasmas, both under local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions, named RAPCAL is presented. This code has been developed with the aim of providing accurate radiative properties for low and medium Z plasmas within the context of detailed level accounting approach and for heavy elements under the detailed configuration accounting approach. In order to show the capabilities of the code, there are presented calculations of some radiative properties for carbon, aluminum, krypton and xenon plasmas under local thermodynamic and non-local thermodynamic equilibrium conditions.

47 citations

Journal ArticleDOI
TL;DR: It is experimentally demonstrated that the Brown-Preston-Singleton formalism provides a better description of the ion stopping than other formalisms around the Bragg peak, except for the ion stopped at v_{i}∼0.3v_{th}, where the Brown -Prestons-Singletons formalism significantly underpredicts the observation.
Abstract: We report on the first accurate validation of low-$Z$ ion-stopping formalisms in the regime ranging from low-velocity ion stopping---through the Bragg peak---to high-velocity ion stopping in well-characterized high-energy-density plasmas. These measurements were executed at electron temperatures and number densities in the range of 1.4--2.8 keV and $4\ifmmode\times\else\texttimes\fi{}{10}^{23}--8\ifmmode\times\else\texttimes\fi{}{10}^{23}\text{ }\text{ }{\mathrm{cm}}^{\ensuremath{-}3}$, respectively. For these conditions, it is experimentally demonstrated that the Brown-Preston-Singleton formalism provides a better description of the ion stopping than other formalisms around the Bragg peak, except for the ion stopping at ${v}_{i}\ensuremath{\sim}0.3{v}_{\mathrm{th}}$, where the Brown-Preston-Singleton formalism significantly underpredicts the observation. It is postulated that the inclusion of nuclear-elastic scattering, and possibly coupled modes of the plasma ions, in the modeling of the ion-ion interaction may explain the discrepancy of $\ensuremath{\sim}20%$ at this velocity, which would have an impact on our understanding of the alpha energy deposition and heating of the fuel ions, and thus reduce the ignition threshold in an ignition experiment.

37 citations


Cited by
More filters
01 Jan 1999

643 citations

Journal ArticleDOI
TL;DR: The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers as mentioned in this paper.
Abstract: The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.

494 citations

Journal Article
TL;DR: A novel method by C. Zhou and R. Betti to assemble and ignite thermonuclear fuel is presented, which features a hot-spot pressure greater than the surrounding dense fuel pressure and requires a lower energy threshold than the conventional isobaric one.
Abstract: A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy.

365 citations

Journal ArticleDOI
TL;DR: In this article, the authors report a comprehensive meta-analysis of 690 independent experiments comparing the performance of organic amendments and mineral-only fertilization on crop yields, the soil organic carbon (SOC) and total nitrogen (TN) contents, soil nutrient dynamics and biological properties.
Abstract: Although numerous studies suggest that organic amendments are better at maintaining soil fertility and crop production than mineral-only fertilization, it is unclear if this occurs in different agricultural systems on a global scale. Here we report a comprehensive meta-analysis of 690 independent experiments comparing the performance of organic amendments and mineral-only fertilization on crop yields, the soil organic carbon (SOC) and total nitrogen (TN) contents, soil nutrient dynamics and biological properties. Our analysis shows that organic amendments increased crop yields on average of 27% than mineral-only fertilization. Farmyard manure (FYM) had the highest effect (49% increase) and this was especially clear in wheat croplands (40% increase). Organic amendment increased the amount of SOC (38%), TN (20%), microbial biomass carbon (MBC; 51%) and microbial biomass nitrogen (MBN; 24%) than mineral-only fertilization. Organic amendments also increased the soil microbiome enzyme activity in terms of soil hydrolytic C acquisition (C-acq; 39%), N acquisition (N-acq; 22%), P acquisition (P-acq; 48%) and oxidative decomposition (OX; 58%). Increased nutrient acquisition and oxidative decomposition could explain the positive effects of organic amendment on crop yields. These observed patterns were consistent for most organic amendments and cropping systems in diverse regions of the world. In summary, our analysis suggests that organic amendments can improve microbe-mediated soil ecosystem functioning, long-term soil fertility and crop productivity, relative to mineral fertilization, on a global scale.

195 citations