scispace - formally typeset
Search or ask a question
Author

Ricardo P. S. M. Lobo

Bio: Ricardo P. S. M. Lobo is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Optical conductivity & Superconductivity. The author has an hindex of 25, co-authored 103 publications receiving 2751 citations. Previous affiliations of Ricardo P. S. M. Lobo include Universidade Federal de Minas Gerais & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: The formation of atomically flat quasi-two-dimensional colloidal CdSe, CdS and CdTe nanoplatelets with well-defined thicknesses ranging from 4 to 11 monolayers with electronic properties of two-dimensional quantum wells formed by molecular beam epitaxy are demonstrated.
Abstract: The syntheses of strongly anisotropic nanocrystals with one dimension much smaller than the two others, such as nanoplatelets, are still greatly underdeveloped. Here, we demonstrate the formation of atomically flat quasi-two-dimensional colloidal CdSe, CdS and CdTe nanoplatelets with well-defined thicknesses ranging from 4 to 11 monolayers. These nanoplatelets have the electronic properties of two-dimensional quantum wells formed by molecular beam epitaxy, and their thickness-dependent absorption and emission spectra are described very well within an eight-band Pidgeon-Brown model. They present an extremely narrow emission spectrum with full-width at half-maximum less than 40 meV at room temperature. The radiative fluorescent lifetime measured in CdSe nanoplatelets decreases with temperature, reaching 1 ns at 6 K, two orders of magnitude less than for spherical CdSe nanoparticles. This makes the nanoplatelets the fastest colloidal fluorescent emitters and strongly suggests that they show a giant oscillator strength transition.

1,026 citations

Journal ArticleDOI
TL;DR: It is shown that, even for a large detuning of 19 meV from the LO photon energy in GaAs, the carrier relaxation remains phonon assisted.
Abstract: We have investigated the polaron dynamics in n-doped InAs/GaAs self-assembled quantum dots by pump-probe midinfrared spectroscopy. A long T1 polaron decay time is measured at both low temperature and room temperature, with values around 70 and 37 ps, respectively. The decay time decreases for energies closer to the optical phonon energy. The relaxation is explained by the strong coupling for the electron-phonon interaction and by the finite lifetime of the optical phonons. We show that, even for a large detuning of 19 meV from the LO photon energy in GaAs, the carrier relaxation remains phonon assisted.

115 citations

Journal ArticleDOI
TL;DR: In this article, the infrared reflectivity measurement on a single crystal between $5\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ and room temperature was performed and the nine predicted phonon modes were fully and unambiguously determined.
Abstract: We discuss the infrared reflectivity measurement on a $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ single crystal between $5\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ and room temperature. The nine predicted $ab$-plane $E$ phonon modes are fully and unambiguously determined. The frequencies of the four ${A}_{1}$ $c$-axis phonons are found. These results settle issues between theory and data on ceramics. Our findings show that the softening of the lowest frequency $E$ mode is responsible for the temperature dependence of the dielectric constant, indicating that the ferroelectric transition in $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ is soft-mode driven.

110 citations

Journal ArticleDOI
01 May 2003-EPL
TL;DR: In this article, the in-plane optical conductivity of Bi2Sr2CaCu2O 8 + δ films with small carrier density up to large carrier density (overdoped) was derived from accurate reflectivity data.
Abstract: The in-plane optical conductivity of Bi2Sr2CaCu2O 8 + δ films with small carrier density (underdoped) up to large carrier density (overdoped) is derived from accurate reflectivity data. Integrating the conductivity up to increasingly higher frequencies yields the energy scale involved in the formation of the condensate. At least in the underdoped sample, states extending up to 2 eV contribute to the superfluid. This anomalously large energy scale may be assigned to a change of in-plane kinetic energy at the superconducting transition, and is compatible with an electronic pairing mechanism.

107 citations

Journal ArticleDOI
TL;DR: A new synthetic procedure for the growth of HgTe, HgSe, and HgS nanocrystals, with strong size tunability from 5 to 200 nm, is developed, which is used to tune the absorption of the nanocry crystals all over the infrared range up to terahertz.
Abstract: We report the synthesis of nanocrystals with an optical feature in the THz range. To do so, we develop a new synthetic procedure for the growth of HgTe, HgSe, and HgS nanocrystals, with strong size tunability from 5 to 200 nm. This is used to tune the absorption of the nanocrystals all over the infrared range up to terahertz (from 2 to 65 μm for absorption peak and even 200 μm for cutoff wavelength). The interest for this procedure is not limited to large sizes since for small objects we demonstrate low aggregation and good shape control (i.e., spherical object) while using nonexpansive and simple mercury halogenide precursors. By integrating these nanocrystals into an electrolyte-gated transistor, we evidence a change of carrier density from p-doped to n-doped as the confinement is vanishing.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize both the basic physics and unresolved aspects of BiFeO3 and device applications, which center on spintronics and memory devices that can be addressed both electrically and magnetically.
Abstract: BiFeO3 is perhaps the only material that is both magnetic and a strong ferroelectric at room temperature. As a result, it has had an impact on the field of multiferroics that is comparable to that of yttrium barium copper oxide (YBCO) on superconductors, with hundreds of publications devoted to it in the past few years. In this Review, we try to summarize both the basic physics and unresolved aspects of BiFeO3 (which are still being discovered with several new phase transitions reported in the past few months) and device applications, which center on spintronics and memory devices that can be addressed both electrically and magnetically.

3,526 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator is presented, with the goal of putting the resonating valence bond idea on a more formal footing.
Abstract: This article reviews the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator. The basic electronic structure of cuprates is reviewed, emphasizing the physics of strong correlation and establishing the model of a doped Mott insulator as a starting point. A variety of experiments are discussed, focusing on the region of the phase diagram close to the Mott insulator (the underdoped region) where the behavior is most anomalous. The normal state in this region exhibits pseudogap phenomenon. In contrast, the quasiparticles in the superconducting state are well defined and behave according to theory. This review introduces Anderson's idea of the resonating valence bond and argues that it gives a qualitative account of the data. The importance of phase fluctuations is discussed, leading to a theory of the transition temperature, which is driven by phase fluctuations and the thermal excitation of quasiparticles. However, an argument is made that phase fluctuations can only explain pseudogap phenomenology over a limited temperature range, and some additional physics is needed to explain the onset of singlet formation at very high temperatures. A description of the numerical method of the projected wave function is presented, which turns out to be a very useful technique for implementing the strong correlation constraint and leads to a number of predictions which are in agreement with experiments. The remainder of the paper deals with an analytic treatment of the $t\text{\ensuremath{-}}J$ model, with the goal of putting the resonating valence bond idea on a more formal footing. The slave boson is introduced to enforce the constraint againt double occupation and it is shown that the implementation of this local constraint leads naturally to gauge theories. This review follows the historical order by first examining the U(1) formulation of the gauge theory. Some inadequacies of this formulation for underdoping are discussed, leading to the SU(2) formulation. Here follows a rather thorough discussion of the role of gauge theory in describing the spin-liquid phase of the undoped Mott insulator. The difference between the high-energy gauge group in the formulation of the problem versus the low-energy gauge group, which is an emergent phenomenon, is emphasized. Several possible routes to deconfinement based on different emergent gauge groups are discussed, which leads to the physics of fractionalization and spin-charge separation. Next the extension of the SU(2) formulation to nonzero doping is described with a focus on a part of the mean-field phase diagram called the staggered flux liquid phase. It will be shown that inclusion of the gauge fluctuation provides a reasonable description of the pseudogap phase. It is emphasized that $d$-wave superconductivity can be considered as evolving from a stable U(1) spin liquid. These ideas are applied to the high-${T}_{c}$ cuprates, and their implications for the vortex structure and the phase diagram are discussed. A possible test of the topological structure of the pseudogap phase is described.

3,246 citations

Journal ArticleDOI
TL;DR: In this article, a top-down thermal oxidation etching of bulk g-C3N4 in air has been shown to improve the photocatalytic activities of the material in terms of OH radical generation and hydrogen evolution.
Abstract: Graphitic (g)-C3N4 with a layered structure has the potential of forming graphene-like nanosheets with unusual physicochemical properties due to weak van der Waals forces between layers. Herein is shown that g-C3N4 nanosheets with a thickness of around 2 nm can be easily obtained by a simple top-down strategy, namely, thermal oxidation etching of bulk g-C3N4 in air. Compared to the bulk g-C3N4, the highly anisotropic 2D-nanosheets possess a high specific surface area of 306 m2 g-1, a larger bandgap (by 0.2 eV), improved electron transport ability along the in-plane direction, and increased lifetime of photoexcited charge carriers because of the quantum confinement effect. As a consequence, the photocatalytic activities of g-C3N4 nanosheets have been remarkably improved in terms of OH radical generation and photocatalytic hydrogen evolution.

2,900 citations