scispace - formally typeset
Search or ask a question
Author

Riccardo Brignoli

Bio: Riccardo Brignoli is an academic researcher from The Catholic University of America. The author has contributed to research in topics: Refrigerant & Refrigeration. The author has an hindex of 12, co-authored 18 publications receiving 635 citations. Previous affiliations of Riccardo Brignoli include University of Padua & National Institute of Standards and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable.
Abstract: Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

287 citations

Journal ArticleDOI
TL;DR: In this article, a semi-supervised data-driven approach is employed for fault detection and isolation that makes no use of a priori knowledge about abnormal phenomena for HVAC installations.

136 citations

Journal ArticleDOI
TL;DR: The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction and specific volume of the nanolubricant.
Abstract: This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction.

74 citations

Journal ArticleDOI
TL;DR: The study shows that the low-GWP refrigerant options are very limited, particularly for fluids with volumetric capacities similar to those of R 410A or R-404A, and the probability of finding 'ideal', better-performing low- GWP fluids is minimal.
Abstract: The merits of an alternative refrigerant are established based on many attributes including environmental acceptance, chemical stability in the refrigeration system, low toxicity, flammability, efficiency and volumetric capacity. In an earlier work, these criteria were used to screen a comprehensive database to search for refrigerants with low global warming potentials (GWP). The present paper summarizes the screening process and presents the performance of the “best” replacement fluids for small and medium-sized air-conditioning, heating, and refrigeration applications. In addition to considering cycle calculations based only on thermodynamic properties, a simulation model that included transport properties and optimized heat exchangers was used to assess the performance potentials of the candidate fluids. The need for this more detailed modeling approach is demonstrated for systems relying on forced-convection evaporation and condensation. The study shows that the low-GWP refrigerant options are very limited, particularly for fluids with volumetric capacities similar to those of R-410A or R-404A. The identified fluids with good COP and low toxicity are at least mildly flammable. Refrigerant blends can be used to increase flexibility in choosing tradeoffs between COP, volumetric capacity, flammability, and GWP. The probability of finding “ideal”, better-performing low-GWP fluids is minimal.

65 citations

Journal ArticleDOI
TL;DR: In this paper, an innovative method for feeding flooded evaporators, arranged in parallel in R744 plants, is presented, where an ejector circulates liquid from the low pressure receiver back to the intermediate pressure receiver.
Abstract: An innovative method for feeding flooded evaporators, arranged in parallel in R744 plants, is presented. In order to promote evaporators overfeeding, an ejector circulates liquid from the low pressure receiver back to the intermediate pressure receiver. Since there is not a need for superheat at the evaporator exit, each evaporator expansion valve can be controlled by a signal representative, either of the evaporator load, or the evaporator performance, such as the air temperature at its inlet or outlet. When compared to dry-expansion evaporator systems, the proposed solution offers energy saving and smooth operating conditions, typical of flooded evaporators, while still maintaining a simple plant lay-out. The concept was experimentally validated: the evaporators were maintained in flooded conditions, while the ejector was able to promote liquid recirculation. Direct comparison with dry-expansion operations was performed. The suggested method is mainly intended for commercial refrigeration plants, where many evaporators are arranged in parallel.

58 citations


Cited by
More filters
Journal Article
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

881 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive literature review on ejector refrigeration systems and working fluids is presented, which deeply analyzes ejector technology and behavior, refrigerant properties and their influence over ejector performance.
Abstract: The increasing need for thermal comfort has led to a rapid increase in the use of cooling systems and, consequently, electricity demand for air-conditioning systems in buildings. Heat-driven ejector refrigeration systems appear to be a promising alternative to the traditional compressor-based refrigeration technologies for energy consumption reduction. This paper presents a comprehensive literature review on ejector refrigeration systems and working fluids. It deeply analyzes ejector technology and behavior, refrigerant properties and their influence over ejector performance and all of the ejector refrigeration technologies, with a focus on past, present and future trends. The review is structured in four parts. In the first part, ejector technology is described. In the second part, a detailed description of the refrigerant properties and their influence over ejector performance is presented. In the third part, a review focused on the main jet refrigeration cycles is proposed, and the ejector refrigeration systems are reported and categorized. Finally, an overview over all ejector technologies, the relationship among the working fluids and the ejector performance, with a focus on past, present and future trends, is presented.

359 citations

Journal ArticleDOI
TL;DR: It is shown that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable.
Abstract: Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

287 citations