scispace - formally typeset
Search or ask a question
Author

Riccardo M.G. Ferrari

Other affiliations: Bosch, University of Trieste
Bio: Riccardo M.G. Ferrari is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Fault detection and isolation & Fault (power engineering). The author has an hindex of 15, co-authored 60 publications receiving 925 citations. Previous affiliations of Riccardo M.G. Ferrari include Bosch & University of Trieste.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of a specially-designed consensus-based estimator is proposed in order to improve the detectability and isolability of faults affecting variables shared among overlapping subsystems and simulation results are reported showing the effectiveness of the proposed methodology.
Abstract: This paper deals with the problem of designing a distributed fault detection and isolation methodology for nonlinear uncertain large-scale discrete-time dynamical systems. As a divide et impera approach is used to overcome the scalability issues of a centralized implementation, the large scale system being monitored is modelled as the interconnection of several subsystems. The subsystems are allowed to overlap, thus sharing some state components. For each subsystem, a Local Fault Diagnoser is designed, based on the measured local state of the subsystem as well as the transmitted variables of neighboring states that define the subsystem interconnections. The local diagnostic decision is made on the basis of the knowledge of the local subsystem dynamic model and of an adaptive approximation of the interconnection with neighboring subsystems. The use of a specially-designed consensus-based estimator is proposed in order to improve the detectability and isolability of faults affecting variables shared among overlapping subsystems. Theoretical results are provided to characterize the detection and isolation capabilities of the proposed distributed scheme. Finally, simulation results are reported showing the effectiveness of the proposed methodology.

205 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems that incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance.
Abstract: Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.

121 citations

Journal ArticleDOI
TL;DR: The use of a specially-designed consensus-based estimator is proposed in order to improve the detectability of faults affecting variables shared among different subsystems, and results provide an evidence of the effectiveness of the proposed distributed fault detection scheme.
Abstract: This technical note deals with the problem of designing a distributed fault detection methodology for distributed (and possibly large-scale) nonlinear dynamical systems that are modelled as the interconnection of several subsystems. The subsystems are allowed to overlap, thus sharing some state components. For each subsystem, a local fault detector is designed, based on the measured local state of the subsystem as well as the transmitted variables of neighboring states that define the subsystem interconnections. The local detection decision is made on the basis of the knowledge of the local subsystem dynamic model and of an adaptive approximation of the interconnection with neighboring subsystems. The use of a specially-designed consensus-based estimator is proposed in order to improve the detectability of faults affecting variables shared among different subsystems. Simulation results provide an evidence of the effectiveness of the proposed distributed fault detection scheme.

99 citations

Journal ArticleDOI
TL;DR: In this paper, a fault detection and isolation (FDI) method is developed for wind turbines based on a benchmark system model, where a fault detector is used for fault detection, and a bank of fault isolation estimators are employed to determine the particular fault type/location.

79 citations

Journal ArticleDOI
TL;DR: A consensus-based estimator is designed to improve the detectability and isolability of faults affecting variables shared among different subsystems, andoretical results are provided to characterize the detection and isolation capabilities of the proposed distributed scheme.

57 citations


Cited by
More filters
Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze data on the sexual behavior of a random sample of individuals, and find that the cumulative distributions of the number of sexual partners during the twelve months prior to the survey decays as a power law with similar exponents for females and males.
Abstract: Many ``real-world'' networks are clearly defined while most ``social'' networks are to some extent subjective. Indeed, the accuracy of empirically-determined social networks is a question of some concern because individuals may have distinct perceptions of what constitutes a social link. One unambiguous type of connection is sexual contact. Here we analyze data on the sexual behavior of a random sample of individuals, and find that the cumulative distributions of the number of sexual partners during the twelve months prior to the survey decays as a power law with similar exponents $\alpha \approx 2.4$ for females and males. The scale-free nature of the web of human sexual contacts suggests that strategic interventions aimed at preventing the spread of sexually-transmitted diseases may be the most efficient approach.

1,476 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a test benchmark model for the evaluation of fault detection and accommodation schemes for a wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator, and the converter system.
Abstract: This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator, and the converter system. Since it is a system-level model, converter and pitch system models are simplified because these are controlled by internal controllers working at higher frequencies than the system model. The model represents a three-bladed pitch-controlled variable-speed wind turbine with a nominal power of 4.8 MW. The fault detection and isolation (FDI) problem was addressed by several teams, and five of the solutions are compared in the second part of this paper. This comparison relies on additional test data in which the faults occur in different operating conditions than in the test data used for the FDI design.

370 citations

Journal ArticleDOI
Dahai Zhang1, Liyang Qian1, Mao Baijin1, Can Huang1, Bin Huang1, Yulin Si1 
TL;DR: An efficient machine learning method, random forests in combination with extreme gradient boosting (XGBoost), is used to establish the data-driven wind turbine fault detection framework that is robust to various wind turbine models including offshore ones in different working conditions.
Abstract: Wind energy has seen great development during the past decade. However, wind turbine availability and reliability, especially for offshore sites, still need to be improved, which strongly affect the cost of wind energy. Wind turbine operational cost is closely depending on component failure and repair rate, while fault detection and isolation will be very helpful to improve the availability and reliability factors. In this paper, an efficient machine learning method, random forests (RFs) in combination with extreme gradient boosting (XGBoost), is used to establish the data-driven wind turbine fault detection framework. In the proposed design, RF is used to rank the features by importance, which are either direct sensor signals or constructed variables from prior knowledge. Then, based on the top-ranking features, XGBoost trains the ensemble classifier for each specific fault. In order to verify the effectiveness of the proposed approach, numerical simulations using the state-of-the-art wind turbine simulator FAST are conducted for three different types of wind turbines in both the below and above rated conditions. It is shown that the proposed approach is robust to various wind turbine models including offshore ones in different working conditions. Besides, the proposed ensemble classifier is able to protect against overfitting, and it achieves better wind turbine fault detection results than the support vector machine method when dealing with multidimensional data.

341 citations