scispace - formally typeset
Search or ask a question
Author

Rich Wolski

Bio: Rich Wolski is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Cloud computing & Grid. The author has an hindex of 44, co-authored 164 publications receiving 11024 citations. Previous affiliations of Rich Wolski include University of Tennessee & University of California.


Papers
More filters
Proceedings ArticleDOI
18 May 2009
TL;DR: This work presents Eucalyptus -- an open-source software framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources.
Abstract: Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary, rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this work, we present Eucalyptus -- an open-source software framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. We outline the basic principles of the Eucalyptus design, detail important operational aspects of the system, and discuss architectural trade-offs that we have made in order to allow Eucalyptus to be portable, modular and simple to use on infrastructure commonly found within academic settings. Finally, we provide evidence that Eucalyptus enables users familiar with existing Grid and HPC systems to explore new cloud computing functionality while maintaining access to existing, familiar application development software and Grid middle-ware.

1,962 citations

Journal ArticleDOI
TL;DR: The current implementation of the NWS for Unix and TCP/IP sockets is described and examples of its performance monitoring and forecasting capabilities are provided.

1,414 citations

Journal ArticleDOI
TL;DR: The AppLeS (Application Level Scheduling) project provides a methodology, application software, and software environments for adaptively scheduling and deploying applications in heterogeneous, multiuser grid environments and outlines the findings.
Abstract: Ensembles of distributed, heterogeneous resources, also known as computational grids, have emerged as critical platforms for high-performance and resource-intensive applications. Such platforms provide the potential for applications to aggregate enormous bandwidth, computational power, memory, secondary storage, and other resources during a single execution. However, achieving this performance potential in dynamic, heterogeneous environments is challenging. Recent experience with distributed applications indicates that adaptivity is fundamental to achieving application performance in dynamic grid environments. The AppLeS (Application Level Scheduling) project provides a methodology, application software, and software environments for adaptively scheduling and deploying applications in heterogeneous, multiuser grid environments. We discuss the AppLeS project and outline our findings.

490 citations

Proceedings ArticleDOI
17 Nov 1996
TL;DR: A set of principles underlying application-level scheduling is defined and a work-in-progress building AppLeS (application- level scheduling) agents are described and illustrated with a detailed description and results for a distributed 2D Jacobi application on two production heterogeneous platforms.
Abstract: Heterogeneous networks are increasingly being used as platforms for resource-intensive distributed parallel applications. A critical contributor to the performance of such applications is the scheduling of constituent application tasks on the network. Since often the distributed resources cannot be brought under the control of a single global scheduler, the application must be scheduled by the user. To obtain the best performance, the user must take into account both application-specific and dynamic system information in developing a schedule which meets his or her performance criteria. In this paper, we define a set of principles underlying application-level scheduling and describe our work-in-progress building AppLeS (application-level scheduling) agents. We illustrate the application-level scheduling approach with a detailed description and results for a distributed 2D Jacobi application on two production heterogeneous platforms.

452 citations

Journal ArticleDOI
TL;DR: The Network Weather Service (NWS) as discussed by the authors is a generalizable and extensible facility designed to provide dynamic resource performance forecasts in metacomputing environments, including TCP/IP end-to-end throughput and latency.
Abstract: The Network Weather Service is a generalizable and extensible facility designed to provide dynamic resource performance forecasts in metacomputing environments. In this paper, we outline its design and detail the predictive performance of the forecasts it generates. While the forecasting methods are general, we focus on their ability to predict the TCP/IP end-to-end throughput and latency that is attainable by an application using systems located at different sites. Such network forecasts are needed both to support scheduling (Berman et al., 1996) and, by the metacomputing software infrastructure, to develop quality-of-service guarantees (DeFanti et al., to appears Grimshaw et al., 1994).

436 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2001
TL;DR: The authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the "Grid problem," which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources--what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

6,716 citations

01 Jan 2012

3,692 citations

Posted Content
TL;DR: This article reviews the "Grid problem," and presents an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In this article, we define this new field. First, we review the "Grid problem," which we define as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources-what we refer to as virtual organizations. In such settings, we encounter unique authentication, authorization, resource access, resource discovery, and other challenges. It is this class of problem that is addressed by Grid technologies. Next, we present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. We describe requirements that we believe any such mechanisms must satisfy, and we discuss the central role played by the intergrid protocols that enable interoperability among different Grid systems. Finally, we discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. We maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

3,595 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: The Globus system is intended to achieve a vertically integrated treatment of application, middleware, and net work, an integrated set of higher level services that enable applications to adapt to heteroge neous and dynamically changing metacomputing environ ments.
Abstract: The Globus system is intended to achieve a vertically integrated treatment of application, middleware, and net work. A low-level toolkit provides basic mechanisms such as communication, authentication, network information, and data access. These mechanisms are used to con struct various higher level metacomputing services, such as parallel programming tools and schedulers. The long- term goal is to build an adaptive wide area resource environment AWARE, an integrated set of higher level services that enable applications to adapt to heteroge neous and dynamically changing metacomputing environ ments. Preliminary versions of Globus components were deployed successfully as part of the I-WAY networking experiment.

3,450 citations

Journal ArticleDOI
TL;DR: A survey of the different security risks that pose a threat to the cloud is presented and a new model targeting at improving features of an existing model must not risk or threaten other important features of the current model.

2,511 citations