scispace - formally typeset
Search or ask a question

Showing papers by "Richard A. Flavell published in 2004"


Journal ArticleDOI
TL;DR: It is shown that TLR7 recognizes the single-stranded RNA viruses, vesicular stomatitis virus and influenza virus, and insights into the pathways used by the innate immune cells in the recognition of viral pathogens are provided.
Abstract: Viral infection of mammalian host results in the activation of innate immune responses. Toll-like receptors (TLRs) have been shown to mediate the recognition of many types of pathogens, including viruses. The genomes of viruses possess unique characteristics that are not found in mammalian genomes, such as high CpG content and double-stranded RNA. These genomic nucleic acids serve as molecular signatures associated with viral infections. Here we show that TLR7 recognizes the single-stranded RNA viruses, vesicular stomatitis virus and influenza virus. The recognition of these viruses by plasmacytoid dendritic cells and B cells through TLR7 results in their activation of costimulatory molecules and production of cytokines. Moreover, this recognition required intact endocytic pathways. Mice deficient in either the TLR7 or the TLR adaptor protein MyD88 demonstrated reduced responses to in vivo infection with vesicular stomatitis virus. These results demonstrate microbial ligand recognition by TLR7 and provide insights into the pathways used by the innate immune cells in the recognition of viral pathogens.

1,833 citations


Journal ArticleDOI
TL;DR: Tlr3-deficient mice were more resistant to lethal WNV infection and had impaired cytokine production and enhanced viral load in the periphery, whereas in the brain, viral load, inflammatory responses and neuropathology were reduced compared to wild-type mice.
Abstract: West Nile virus (WNV), a mosquito-borne single-stranded (ss)RNA flavivirus, causes human disease of variable severity. We investigated the involvement of Toll-like receptor (Tlr) 3, which recognizes viral double-stranded (ds)RNA, on WNV infection. Tlr3-deficient (Tlr3(-/-)) mice were more resistant to lethal WNV infection and had impaired cytokine production and enhanced viral load in the periphery, whereas in the brain, viral load, inflammatory responses and neuropathology were reduced compared to wild-type mice. Peripheral WNV infection led to a breakdown of the blood-brain barrier and enhanced brain infection in wild-type but not in Tlr3(-/-) mice, although both groups were equally susceptible upon intracerebroventricular administration of the virus. Tumor necrosis factor-alpha receptor 1 signaling is vital for blood-brain barrier compromise upon Tlr3 stimulation by dsRNA or WNV. Collectively, WNV infection leads to a Tlr3-dependent inflammatory response, which is involved in brain penetration of the virus and neuronal injury.

1,100 citations


Journal ArticleDOI
05 Mar 2004-Science
TL;DR: A member of the mammalian TLR family, TLR11, is reported that displays a distinct pattern of expression in macrophages and liver, kidney, and bladder epithelial cells, indicating a potentially important role in preventing infection of internal organs of the urogenital system.
Abstract: Toll-like receptors (TLRs) recognize molecular patterns displayed by microorganisms, and their subsequent activation leads to the transcription of appropriate host-defense genes. Here we report the cloning and characterization of a member of the mammalian TLR family, TLR11, that displays a distinct pattern of expression in macrophages and liver, kidney, and bladder epithelial cells. Cells expressing TLR11 fail to respond to known TLR ligands but instead respond specifically to uropathogenic bacteria. Mice lacking TLR11 are highly susceptible to infection of the kidneys by uropathogenic bacteria, indicating a potentially important role for TLR11 in preventing infection of internal organs of the urogenital system.

1,009 citations


Journal ArticleDOI
TL;DR: The phenotypic effect of the Tlr9(CpG1) allele points to a critical role for TLR9 in viral sensing and identifies a vulnerable amino acid within the ectodomain of three TLR proteins, essential for a ligand response.
Abstract: Several subsets of dendritic cells have been shown to produce type I IFN in response to viral infections, thereby assisting the natural killer cell-dependent response that eliminates the pathogen. Type I IFN production can be induced both by unmethylated CpG-oligodeoxynucleotide and by double-stranded RNA. Here, we describe a codominant CpG-ODN unresponsive phenotype that results from an N-ethyl-N-nitrosourea-induced missense mutation in the Tlr9 gene (Tlr9CpG1). Mice homozygous for the Tlr9CpG1 allele are highly susceptible to mouse cytomegalovirus infection and show impaired infection-induced secretion of IFN-α/β and natural killer cell activation. We also demonstrate that both the Toll-like receptor (TLR) 9 → MyD88 and TLR3 → Trif signaling pathways are activated in vivo on viral inoculation, and that each pathway contributes to innate defense against systemic viral infection. Whereas both pathways lead to type I IFN production, neither pathway offers full protection against mouse cytomegalovirus infection in the absence of the other. The Tlr9CpG1 mutation alters a leucine-rich repeat motif and lies within a receptor domain that is conserved within the evolutionary cluster encompassing TLRs 7, 8, and 9. In other TLRs, including three mouse-specific TLRs described in this paper, the affected region is not represented. The phenotypic effect of the Tlr9CpG1 allele thus points to a critical role for TLR9 in viral sensing and identifies a vulnerable amino acid within the ectodomain of three TLR proteins, essential for a ligand response.

974 citations


Journal ArticleDOI
14 May 2004-Cell
TL;DR: It is demonstrated that Jagged constitutes an instructive signal for Th2 differentiation, which is independent of IL4/STAT6, and induced by APC is abrogated in T cells lacking the Notch effector RBPJkappa.

885 citations


Journal ArticleDOI
TL;DR: Results from in vivo incorporation of BrdUrd revealed that the generation of a high frequency of regulatory T cells in the islets is due to in situ expansion upon TGF-beta expression, demonstrating a previously uncharacterized mechanism by which T GF-beta inhibits autoimmune diseases via regulation of the size of the CD4+CD25+ regulatory T cell pool in vivo.
Abstract: CD4+CD25+ regulatory T cells are essential in the protection from organ-specific autoimmune diseases. In the pancreas, they inhibit actions of autoreactive T cells and thereby prevent diabetes progression. The signals that control the generation, the maintenance, or the expansion of regulatory T cell pool in vivo remain poorly understood. Here we show that a transient pulse of transforming growth factor β (TGF-β) in the islets during the priming phase of diabetes is sufficient to inhibit disease onset by promoting the expansion of intraislet CD4+CD25+ T cell pool. Approximately 40–50% of intraislet CD4+ T cells expressed the CD25 marker and exhibited characteristics of regulatory T cells including small size, high level of intracellular CTLA-4, expression of Foxp3, and transfer of protection against diabetes. Results from in vivo incorporation of BrdUrd revealed that the generation of a high frequency of regulatory T cells in the islets is due to in situ expansion upon TGF-β expression. Thus, these findings demonstrate a previously uncharacterized mechanism by which TGF-β inhibits autoimmune diseases via regulation of the size of the CD4+CD25+ regulatory T cell pool in vivo.

459 citations


Journal ArticleDOI
TL;DR: Using the chromosome conformation capture technique, it is found that in T cells, natural killer cells, B cells and fibroblasts, the promoters for the genes encoding TH2 cytokines are located in close spatial proximity, forming an initial chromatin core configuration.
Abstract: The T helper type 2 (T(H)2) locus control region is important in the regulation of the genes encoding the cytokines interleukins 4, 5 and 13. Using the chromosome conformation capture technique, we found that in T cells, natural killer cells, B cells and fibroblasts, the promoters for the genes encoding T(H)2 cytokines are located in close spatial proximity, forming an initial chromatin core configuration. In CD4(+) T cells and natural killer cells, but not B cells and fibroblasts, the T(H)2 locus control region participates in this configuration. The transcription factors GATA3 and STAT6 are essential for the establishment and/or maintenance of these interactions. Intrachromosomal interactions in the T(H)2 cytokine locus may form the basis for the coordinated transcriptional regulation of cytokine-encoding genes by the T(H)2 locus control region.

454 citations


Journal ArticleDOI
TL;DR: By eliminating c-Jun N-terminal kinases (JNKs) the authors can prevent neurodegeneration and improve motor function in an animal model of PD, and revealed that JNK2- and JNK3-induced COX-2 may be a principle pathway responsible for neurodegenersation in PD.
Abstract: Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopamine-containing neurons, but the molecular pathways underlying its pathogenesis remain uncertain. Here, we show that by eliminating c-Jun N-terminal kinases (JNKs) we can prevent neurodegeneration and improve motor function in an animal model of PD. First, we found that c-Jun is activated in dopaminergic neurons from PD patients and in the 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine (MPTP) mouse model of PD. Examination of various JNK-deficient mice shows that both JNK2 and JNK3, but not JNK1, are required for MPTP-induced c-Jun activation and dopaminergic cell demise. Furthermore, we have identified cyclooxygenase (COX) 2 as a molecular target of JNK activation and demonstrated that COX-2 is indispensable for MPTP-induced dopaminergic cell death. Our data revealed that JNK2- and JNK3-induced COX-2 may be a principle pathway responsible for neurodegeneration in PD.

407 citations


Journal ArticleDOI
01 May 2004-Virology
TL;DR: The results indicate that TLR3 is not universally required for the generation of effective antiviral responses because the absence ofTLR3 does not alter either viral pathogenesis or impair host's generation of adaptive antiviral response to these viruses.

375 citations


Journal ArticleDOI
23 Sep 2004-Nature
TL;DR: A critical role is demonstrated for PtdIns(4,5)P2 synthesis in the regulation of multiple steps of the synaptic vesicle cycle in the brain and an impairment of its depolarization-dependent synthesis in nerve terminals lead to early postnatal lethality and synaptic defects in mice.
Abstract: Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) has an important function in cell regulation both as a precursor of second messenger molecules and by means of its direct interactions with cytosolic and membrane proteins. Biochemical studies have suggested a role for PtdIns(4,5)P2 in clathrin coat dynamics, and defects in its dephosphorylation at the synapse produce an accumulation of coated endocytic intermediates. However, the involvement of PtdIns(4,5)P2 in synaptic vesicle exocytosis remains unclear. Here, we show that decreased levels of PtdIns(4,5)P2 in the brain and an impairment of its depolarization-dependent synthesis in nerve terminals lead to early postnatal lethality and synaptic defects in mice. These include decreased frequency of miniature currents, enhanced synaptic depression, a smaller readily releasable pool of vesicles, delayed endocytosis and slower recycling kinetics. Our results demonstrate a critical role for PtdIns(4,5)P2 synthesis in the regulation of multiple steps of the synaptic vesicle cycle.

364 citations


Journal ArticleDOI
TL;DR: It is shown that OspC strongly binds to the tick salivary gland, suggesting a role for OSpC in spirochete adherence to this tissue, and conclusively demonstrate the importance of OSPC in the invasion of tickSalivary glands by B. burgdorferi, a critical step in the transmission of spiroChetes from the arthropod vector to the mammalian host.
Abstract: Outer surface protein C (OspC) is a differentially expressed major surface lipoprotein of Borrelia burgdorferi. ospC is swiftly upregulated when spirochetes leave the Ixodes scapularis tick gut, migrate to the salivary gland, and exit the arthropod vector. Here we show that OspC strongly binds to the tick salivary gland, suggesting a role for OspC in spirochete adherence to this tissue. In vivo studies using a murine model of Lyme borreliosis showed that while OspC F(ab)2 fragments did not influence either the viability of spirochetes or ospC gene expression, they did interfere with B. burgdorferi invasion of tick salivary glands. We then generated ospC knockout spirochetes in an infectious clone of B. burgdorferi and examined them within the vector. OspC-deficient or wild-type spirochetes persisted equally within the gut of unfed ticks and multiplied during the tick engorgement; however, unlike wild-type B. burgdorferi, the mutants were unable to invade salivary glands. Salivary gland colonization of OspC-deficient spirochetes was completely restored when this mutant was complemented in trans with a plasmid harboring the wild-type ospC gene. These studies conclusively demonstrate the importance of OspC in the invasion of tick salivary glands by B. burgdorferi, a critical step in the transmission of spirochetes from the arthropod vector to the mammalian host.

Journal ArticleDOI
TL;DR: It is demonstrated that Egr-1–mediated apoptosis is a prerequisite for TGF-β1–induced fibrosis and remodeling and defined the critical role of Egr–1 in the TGF–β1 phenotype.
Abstract: Fibrosis and apoptosis are juxtaposed in pulmonary disorders such as asthma and the interstitial diseases, and transforming growth factor (TGF)-β1 has been implicated in the pathogenesis of these responses. However, the in vivo effector functions of TGF-β1 in the lung and its roles in the pathogenesis of these responses are not completely understood. In addition, the relationships between apoptosis and other TGF-β1–induced responses have not been defined. To address these issues, we targeted bioactive TGF-β1 to the murine lung using a novel externally regulatable, triple transgenic system. TGF-β1 produced a transient wave of epithelial apoptosis that was followed by mononuclear-rich inflammation, tissue fibrosis, myofibroblast and myocyte hyperplasia, and septal rupture with honeycombing. Studies of these mice highlighted the reversibility of this fibrotic response. They also demonstrated that a null mutation of early growth response gene (Egr)-1 or caspase inhibition blocked TGF-β1–induced apoptosis. Interestingly, both interventions markedly ameliorated TGF-β1–induced fibrosis and alveolar remodeling. These studies illustrate the complex effects of TGF-β1 in vivo and define the critical role of Egr-1 in the TGF-β1 phenotype. They also demonstrate that Egr-1–mediated apoptosis is a prerequisite for TGF-β1–induced fibrosis and remodeling.

Journal ArticleDOI
TL;DR: Data indicate that JNK can shift the balance of TNF-stimulated cell death from apoptosis to necrosis, which may represent a contributing factor in stress-induced inflammatory responses mediated by JNK.
Abstract: The c-Jun NH(2)-terminal kinase (JNK) has been implicated in both cell death and survival responses to different stimuli. Here we reexamine the function of JNK in tumor necrosis factor (TNF)-stimulated cell death using fibroblasts isolated from wild-type, Mkk4(-/-) Mkk7(-/-), and Jnk1(-/-) Jnk2(-/-) mice. We demonstrate that JNK can act to suppress TNF-stimulated apoptosis. However, we find that JNK can also potentiate TNF-stimulated necrosis by increasing the production of reactive oxygen species (ROS). Together, these data indicate that JNK can shift the balance of TNF-stimulated cell death from apoptosis to necrosis. Increased necrosis may represent a contributing factor in stress-induced inflammatory responses mediated by JNK.

Journal ArticleDOI
TL;DR: The combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers and the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers.
Abstract: Recent studies suggest that postmitotic neurons can reenter the cell cycle as a prelude to apoptosis after brain injury. However, most dying neurons do not pass the G1/S-phase checkpoint to resume DNA synthesis. The specific factors that trigger abortive DNA synthesis are not characterized. Here we show that the combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers. After hypoxia-ischemia, the majority of BrdU- and neuronal nuclei (NeuN)-immunoreactive cells are also terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-stained, suggesting that they undergo apoptosis. BrdU+ neurons, labeled shortly after hypoxia-ischemia, persist for >5 d but eventually disappear by 28 d. Before disappearing, these BrdU+/NeuN+/TUNEL+ neurons express the proliferating cell marker Ki67, lose the G1-phase cyclin-dependent kinase (CDK) inhibitors p16INK4 and p27Kip1 and show induction of the late G1/S-phase CDK2 activity and phosphorylation of the retinoblastoma protein. This contrasts to kainic acid excitotoxicity and traumatic brain injury, which produce TUNEL-positive neurons without evidence of DNA synthesis or G1/S-phase cell cycle transition. These findings suggest that hypoxia-ischemia triggers neurons to reenter the cell cycle and resume apoptosis-associated DNA synthesis in brain. Our data also suggest that the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers. Manipulating the aberrant apoptosis-associated DNA synthesis that occurs with hypoxia-ischemia and perhaps neurodegenerative diseases could promote neuronal survival and neurogenesis.

Journal ArticleDOI
12 Aug 2004-Nature
TL;DR: MKP5 has a principal function in both innate and adaptive immune responses, and represents a novel target for therapeutic intervention of immune diseases.
Abstract: Mitogen-activated protein (MAP) kinases are essential regulators in immune responses, and their activities are modulated by kinases and phosphatases. MAP kinase phosphatase (MKP) is a family of dual-specificity phosphatases whose function is evolutionarily conserved. A number of mammalian MKPs have been identified so far, but their specific physiological functions in negative regulation of MAP kinases have not been genetically defined. Here we examine innate and adaptive immune responses in the absence of MKP5. JNK activity was selectively increased in Mkp5 (also known as Dusp10)-deficient mouse cells. Mkp5-deficient cells produced greatly enhanced levels of pro-inflammatory cytokines during innate immune responses and exhibited greater T-cell activation than their wild-type counterparts. However, Mkp5-deficient T cells proliferated poorly upon activation, which resulted in increased resistance to experimental autoimmune encephalomyelitis. By contrast, Mkp5-deficient CD4(+) and CD8(+) effector T cells produced significantly increased levels of cytokines compared with wild-type cells, which led to much more robust and rapidly fatal immune responses to secondary infection with lymphocytic choriomeningitis virus. Therefore, MKP5 has a principal function in both innate and adaptive immune responses, and represents a novel target for therapeutic intervention of immune diseases.

Journal ArticleDOI
TL;DR: It is demonstrated that caspase-3 is crucial for the differentiation of BMSSCs by influencing TGF-β/Smad2 pathway and cell cycle progression and caused accelerated bone loss in ovariectomized mice.
Abstract: Caspase-3 is a critical enzyme for apoptosis and cell survival. Here we report delayed ossification and decreased bone mineral density in caspase-3–deficient (Casp3 –/– and Casp3 +/– ) mice due to an attenuated osteogenic differentiation of bone marrow stromal stem cells (BMSSCs). The mechanism involved in the impaired differentiation of BMSSCs is due, at least partially, to the overactivated TGF-β/Smad2 signaling pathway and the upregulated expressions of p53 and p21 along with the downregulated expressions of Cdk2 and Cdc2, and ultimately increased replicative senescence. In addition, the overactivated TGF-β/Smad2 signaling may result in the compromised Runx2/Cbfa1 expression in preosteoblasts. Furthermore, we demonstrate that caspase-3 inhibitor, a potential agent for clinical treatment of human diseases, caused accelerated bone loss in ovariectomized mice, which is also associated with the overactivated TGF-β/Smad2 signaling in BMSSCs. This study demonstrates that caspase-3 is crucial for the differentiation of BMSSCs by influencing TGF-β/Smad2 pathway and cell cycle progression.

Journal ArticleDOI
01 Dec 2004-Immunity
TL;DR: This study identifies several functional elements within a 3' region of the rad50 gene possessing strong enhancer activity as well as activity consistent with function as a locus control region (LCR) for the flanking Th2 cytokine genes, and finds four DNase I hypersensitive clusters.

Journal ArticleDOI
TL;DR: It is shown that Kv1.3 gene deletion and channel inhibition increase peripheral insulin sensitivity in vivo and pinpoint a pathway through which K channels regulate peripheral glucose homeostasis, and identify Kv 1.3 as a pharmacologic target for the treatment of diabetes.
Abstract: Kv1.3 is a voltage-gated potassium (K) channel expressed in a number of tissues, including fat and skeletal muscle. Channel inhibition improves experimental autoimmune encephalitis, in part by reducing IL-2 and tumor necrosis factor production by peripheral T lymphocytes. Gene inactivation causes mice (Kv1.3-/-) exposed to a high-fat diet to gain less weight and be less obese than littermate control. Interestingly, although Kv1.3-/- mice on the high-calorie diet gain weight, they remain euglycemic, with low blood insulin levels. This observation prompted us to examine the effect of Kv1.3 gene inactivation and inhibition on peripheral glucose homeostasis and insulin sensitivity. Here we show that Kv1.3 gene deletion and channel inhibition increase peripheral insulin sensitivity in vivo. Baseline and insulin-stimulated glucose uptake are increased in adipose tissue and skeletal muscle of Kv1.3-/- mice. Inhibition of Kv1.3 activity facilitates the translocation of the glucose transporter, GLUT4, to the plasma membrane. It also suppresses c-JUN terminal kinase activity in fat and skeletal muscle and decreases IL-6 and tumor necrosis factor secretion by adipose tissue. We conclude that Kv1.3 inhibition improves insulin sensitivity by increasing the amount of GLUT4 at the plasma membrane. These results pinpoint a pathway through which K channels regulate peripheral glucose homeostasis, and identify Kv1.3 as a pharmacologic target for the treatment of diabetes.

Journal ArticleDOI
TL;DR: It is shown that mice with T cell-specific blockade of type beta transforming growth factor (TGFbeta) signaling are completely insensitive to the bone-sparing effect of E, and that TGFbeta signaling in T cells preserves bone homeostasis by blunting T cell activation.
Abstract: Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss.

Journal ArticleDOI
TL;DR: The data presented here provide evidence for the existence of a novel intracellular pathway independent of TLR-mediated signaling responsible for live virus triggering of DC maturation and demonstrate its critical role in the onset of antiviral immunity.
Abstract: TLR signaling leads to dendritic cell (DC) maturation and immunity to diverse pathogens. The stimulation of TLRs by conserved viral structures is the only described mechanism leading to DC maturation after a virus infection. In this report, we demonstrate that mouse myeloid DCs mature normally after in vivo and in vitro infection with Sendai virus (SeV) in the absence of TLR3, 7, 8, or 9 signaling. DC maturation by SeV requires virus replication not necessary for TLR-mediated triggering. Moreover, DCs deficient in TLR signaling efficiently prime for Th1 immunity after infection with influenza or SeV, generating IFN-γ-producing T cells, CTLs and antiviral Abs. We have previously demonstrated that SeV induces DC maturation independently of the presence of type I IFN, which has been reported to mature DCs in a TLR-independent manner. The data presented here provide evidence for the existence of a novel intracellular pathway independent of TLR-mediated signaling responsible for live virus triggering of DC maturation and demonstrate its critical role in the onset of antiviral immunity. The revelation of this pathway should stimulate invigorating research into the mechanism for virus-induced DC maturation and immunity.

Journal ArticleDOI
TL;DR: Gadd45 β mediated inflammatory cytokine production by dendritic cells, and Gadd45β-deficient mice showed an impaired T helper type 1 response during Listeria monocytogenes infection, indicating a critical feedback regulator that perpetuates both cognate and inflammatory signals.
Abstract: Gadd45β (growth arrest and DNA damage–inducible, β) is involved in cell cycle arrest, apoptosis, signal transduction and cell survival. In T cells, Gadd45b was rapidly induced by T cell receptor (TCR) and inflammatory signals. Deficiency of Gadd45β in CD4+ T cells impaired their responses to TCR stimulation or inflammatory cytokines. ERK, p38 and JNK activation were all substantially suppressed in Gadd45β-deficient CD4+ T cells. Cytokine production by Gadd45β-deficient CD4+ T cells was also impaired. Furthermore, Gadd45β mediated inflammatory cytokine production by dendritic cells, and Gadd45β-deficient mice showed an impaired T helper type 1 response during Listeria monocytogenes infection. Gadd45β is therefore a critical feedback regulator that perpetuates both cognate and inflammatory signals.

Journal ArticleDOI
TL;DR: The data suggest that CO confers potent antiproliferative effects in CD3-activated T lymphocytes and that these antiprology effects in T lymphocyte are mediated by p21Cip1-dependent caspase activity, in particular caspases-8, independent of cGMP and mitogen-activated protein kinase signaling pathways.
Abstract: T lymphocyte activation and proliferation is involved in many pathological processes. We have recently shown that carbon monoxide (CO), an enzymatic product of heme oxyenase-1 (HO-1), confers potent antiproliferative effects in airway and vascular smooth muscle cells. The purpose of this study was to determine whether CO can inhibit T lymphocyte proliferation and then to determine the mechanism by which CO can modulate T lymphocyte proliferation. In the presence of 250 parts per million CO, CD3-activated T lymphocyte proliferation was, remarkably, inhibited by 80% when compared with controls. We observed that the antiproliferative effect of CO in T lymphocytes was independent of the mitogen-activated protein kinase or cGMP signaling pathways, unlike what we demonstrated previously in smooth muscle cells. We demonstrate that CO inhibited caspase-3 and caspase-8 expression and activity, and caspase inhibition with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK pan-caspase inhibitor) blocked T lymphocyte proliferation. Furthermore, in caspase-8-deficient lymphocytes, the antiproliferative effect of CO was markedly attenuated, further supporting the involvement of caspase-8 in the antiproliferative effects of CO. CO also increased the protein level of p21Cip1, and CO-mediated inhibition of caspase activity is partially regulated by p21Cip1. Taken together, these data suggest that CO confers potent antiproliferative effects in CD3-activated T lymphocytes and that these antiproliferative effects in T lymphocytes are mediated by p21Cip1-dependent caspase activity, in particular caspase-8, independent of cGMP and mitogen-activated protein kinase signaling pathways.

Journal ArticleDOI
TL;DR: The immune response of caspase-1(-/-) mice to Listeria monocytogenes infection was normal and they successfully cleared the pathogen following secondary infection, in spite of a moderate skewing of cytokine profile to T(h)2 when compared to wild-type mice.
Abstract: Caspase-1 [IL-1beta-converting enzyme (ICE)] processes substrate precursor molecules to yield the biologically active form of IL-1beta and IL-18, both of which are considered to play important roles in the host defense by activation of both innate and adaptive immunity. We evaluated the immune response of caspase-1(-/-) mice to Listeria monocytogenes (LM) infection. LM eradication in the early phase of infection was impaired in the mutant mice with a prominent decrease in IL-18 and IFN-gamma production, but not in IL-12. Caspase-1(-/-) spleen cells including dendritic cells and NK cells produced less IFN-gamma in response to heat-killed LM than wild-type cells in vitro. IFN-gamma production and bactericidal activity in LM-infected caspase-1(-/-) mice was reconstituted to normal levels by adding back IL-18 at the initial phase of infection, suggesting that the lack of this cytokine is primarily responsible for the susceptibility of caspase-1(-/-) mice against LM infection. Moreover, IFN-gamma injection of caspase-1(-/-) mice corrected the deficiency in pathogen clearance. In contrast, LM-specific acquired immunity in caspase-1(-/-) mice was normal and they successfully cleared the pathogen following secondary infection, in spite of a moderate skewing of cytokine profile to T(h)2 when compared to wild-type mice. These data shed light on the importance of caspase-1-mediated IL-18 processing in innate immunity against facultative intracellular pathogens.

Journal ArticleDOI
TL;DR: MEKK4 mediates the action of GADD45β and Gadd45γ on p38 activation and IFNγ production, and appears to integrate upstream signals transduced by both T cell receptor and IL12/STAT4, leading to augmented IFnγ production in a process independent of STAT4.
Abstract: The stress-inducible molecules GADD45β and GADD45γ have been implicated in regulating IFNγ production in CD4 T cells. However, how GADD45 proteins function has been controversial. MEKK4 is a MAP kinase kinase kinase that interacts with GADD45 in vitro. Here we generated MEKK4-deficient mice to define the function and regulation of this pathway. CD4 T cells from MEKK4−/− mice have reduced p38 activity and defective IFNγ synthesis. Expression of GADD45β or GADD45γ promotes IFNγ production in MEKK4+/+ T cells, but not in MEKK4−/− cells or in cells treated with a p38 inhibitor. Thus, MEKK4 mediates the action of GADD45β and GADD45γ on p38 activation and IFNγ production. During Th1 differentiation, the GADD45β/GADD45γ/MEKK4 pathway appears to integrate upstream signals transduced by both T cell receptor and IL12/STAT4, leading to augmented IFNγ production in a process independent of STAT4.

Journal ArticleDOI
TL;DR: It is demonstrated that viral dsRNA is clearly arthritogenic, and macrophages and their products play an important role in the development of arthritis triggered by ds RNA, which was triggered through IL-1R signaling.
Abstract: Viral infections often lead to arthralgias and overt arthritic states. The inflammatogenic compound of the viruses giving rise to such an outcome has to date not been identified. Because expression of dsRNA is a common feature of all viruses, we decided to analyze whether this property leads to the induction of arthritis. Histological signs of arthritis were evident already on day 3 following intra-articular administration of dsRNA. Arthritis was characterized by infiltration of macrophages into synovial tissue. It was not dependent on acquired immune responses because SCID mice also raised joint inflammation. NF-κB was activated upon in vitro exposure to dsRNA, indicating its role in the induction/progression of arthritis. Importantly, we found that dsRNA arthritis was triggered through IL-1R signaling because mice being deficient for this molecule were unable to develop joint inflammation. Although dsRNA is typically recognized by Toll-like receptor 3, Toll-like receptor 3 knockout mice developed arthritis, indicating that some other receptors are instrumental in the inducing of inflammation. Our results from in vitro experiments indicate that proinflammatory cytokines and chemokines stimulating monocyte influx were readily triggered in response to stimulation with dsRNA. These findings demonstrate that viral dsRNA is clearly arthritogenic. Importantly, macrophages and their products play an important role in the development of arthritis triggered by dsRNA.

Journal ArticleDOI
TL;DR: Together, these data demonstrate that the JNK pathway may contribute to the regulation of autocrine TGF-β1-mediated biological responses in vivo and represents an unexpected form of cross-talk between two important signaling pathways.

Journal ArticleDOI
TL;DR: The innate immune system allows the activation of the adaptive immune response by production of proinflammatory cytokines and by providing stimulatory signals via major histocompatibility complex molecules and costimulatory molecules such as CD40, CD80, or CD86; together, these lead to the full activation of both immune systems to fight against pathogenic microorganisms.
Abstract: The innate immune system is evolutionarily conserved among all multicellular organisms and is the first line of defense against microorganisms. It enables the host not only to combat pathogenic organisms but also to cohabit with nonpathogenic microorganisms by balancing the host-microorganism interaction. The innate immune response is activated rapidly (within hours) compared with adaptive immunity. Activation of the innate immune system allows the activation of the adaptive immune response by production of proinflammatory cytokines and by providing stimulatory signals via major histocompatibility complex molecules and costimulatory molecules such as CD40, CD80, or CD86; together, these lead to the full activation of both immune systems to fight against pathogenic microorganisms. Activation of the innate immune system, however, can be a double-edged sword for the host. Proinflammatory cytokines mediate a positive feedback loop on the innate immune system, and overproduction of cytokines, if unchecked, is hazardous to the host and may cause severe outcomes such as hyperthermia, organ failure, and even death in extreme cases. Moreover, if the overproduction of proinflammatory cytokines persists, it may cause chronic inflammatory diseases. During evolution, the innate immune system has acquired complicated regulatory systems to control itself so that this "sword" will not kill the host. Various mechanisms including inhibition of Toll-like receptor signaling by interleukin-1 receptor-associated kinase-M have evolved for this purpose and are important not only to fight against pathogenic microorganisms efficiently but also are critical for the peaceful coexistence with commensal bacterial flora.

Journal ArticleDOI
TL;DR: The localization of the AHNAKs in close proximity to transverse tubule membranes and Z-band regions of cardiac sarcomeres raise the possibility that they might be involved in regulating excitation/contraction coupling of cardiomyocytes, but other studies indicate that the association of AH NAKs with calcium channel proteins is more widespread.
Abstract: To explore the function of the giant AHNAK molecule, first described in 1992 [Shtivelman, E., Cohen, F. E. & Bishop, J. M. (1992) Proc. Natl. Acad. Sci. USA 89, 5472–5476], we created AHNAK null mice by homologous recombination. Homozygous knockouts showed no obvious phenotype, but revealed instead a second AHNAK-like molecule, provisionally designated AHNAK2. Like the original AHNAK, AHNAK2 is a 600-kDa protein composed of a large number of highly conserved repeat segments. Structural predictions suggest that the repeat segments of both AHNAKs may have as their basic framework a series of linked, antiparallel β-strands similar to those found in β-propeller proteins. Both AHNAKs appear to localize to Z-band regions of mouse cardiomyocytes and cosediment with membrane vesicles containing the dihydropyridine receptor, which is consistent with earlier reports that the AHNAKs are linked to L-type calcium channels and can be phosphorylated by protein kinase A. The localization of the AHNAKs in close proximity to transverse tubule membranes and Z-band regions of cardiac sarcomeres raise the possibility that they might be involved in regulating excitation/contraction coupling of cardiomyocytes, but other studies indicate that the association of AHNAKs with calcium channel proteins is more widespread. AHNAK2 is predicted to have a PDZ domain within its N-terminal, nonrepeating domain, which may mediate these interactions.

Journal ArticleDOI
TL;DR: It is concluded that JNK is necessary for epithelial morphogenesis and is an essential regulator of signal transduction by the EGF receptor in the epidermis.
Abstract: The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein kinases is activated in response to a wide array of cellular stresses and proinflammatory cytokines. Roles for JNK in the developing nervous system and T-cell-mediated immunity have been established by detailed studies of mice with compound mutations in the Jnk genes. However, little is known concerning the roles of JNK in other mammalian tissues. Mice lacking both of the ubiquitously expressed isoforms (JNK1 and -2) die during midgestation with neural tube closure defects and brain abnormalities. Here we show that JNK-deficient mice exhibit delayed epithelial development in the epidermis, intestines, and lungs. In addition, JNK-deficient mice exhibit an eyelid closure defect associated with markedly reduced epidermal growth factor (EGF) receptor function, and loss of expression of the ligand EGF. We further demonstrate that adult mice lacking either JNK1 or -2 display striking differences in epidermal proliferation and differentiation, indicative of distinct roles for these kinases in the skin. We conclude that JNK is necessary for epithelial morphogenesis and is an essential regulator of signal transduction by the EGF receptor in the epidermis.

Journal ArticleDOI
TL;DR: New evidence is provided that Th2 cytokines play key roles in atopic diseases, including infiltration of inflammatory cells and hypertrophy of airway epithelial cells.
Abstract: We have investigated the role of Th2 cytokines in the development of atopic diseases using transgenic mice carrying large genomic segments containing IL4, IL13 and IL5 genes and overexpressing these Th2 cytokines. In vitro stimulated, but not unstimulated, Th2 cells from the transgenic mice expressed high levels of IL4, IL13 and IL5 compared to those from non-transgenic mice. The transgenic mice developed spontaneous atopic dermatitis and airway inflammation against environmental allergens. The affected regions for atopic dermatitis covered the entire body including skin in the face, ear, eye-lid, neck, hind region and tail. Histological features showed thickened epidermis and dermis and infiltration of large numbers of inflammatory cells in the affected regions. The transgenic mice also showed airway inflammation characteristic of asthma, including infiltration of inflammatory cells and hypertrophy of airway epithelial cells. These mice also expressed high level of serum IgE, which is a hallmark of atopic diseases. In summary, this study provides additional evidence that Th2 cytokines play key roles in atopic diseases.