scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF‐βRII DN mice, demonstrating that helminthic induction of intestinal T cell IL‐10 secretion requires intact T cell T GF‐β‐signaling pathway.
Abstract: Colonization with helminthic parasites induces mucosal regulatory cytokines, like IL-10 or TGF-beta, that are important in suppressing colitis. Helminths induce mucosal T cell IL-10 secretion and regulate lamina propria mononuclear cell (LPMC) Th1 cytokine generation in an IL-10-dependent manner in WT mice. Helminths also stimulate mucosal TGF-beta release. As TGF-beta exerts major regulatory effects on T lymphocytes, we investigated the role of T lymphocyte TGF-beta signaling in helminthic modulation of intestinal immunity. T cell TGF-beta signaling is interrupted in TGF-beta receptor II dominant negative (TGF-betaRII DN) mice by T-cell-specific over-expression of a TGF-betaRII DN. We studied LPMC responses in WT and TGF-betaRII DN mice that were uninfected or colonized with the nematode, Heligmosomoides polygyrus. Our results indicate an essential role of T cell TGF-beta signaling in limiting mucosal Th1 and Th2 responses. Furthermore, we demonstrate that helminthic induction of intestinal T cell IL-10 secretion requires intact T cell TGF-beta-signaling pathway. Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF-betaRII DN mice. Thus, T cell TGF-beta signaling is essential for helminthic stimulation of mucosal IL-10 production, helminthic modulation of intestinal IFN-gamma generation and H. polygyrus-mediated suppression of chronic colitis.

80 citations

Journal ArticleDOI
TL;DR: The data show that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-adaptive immune cell crosstalk, thereby impacting beneficially on the ensuing virus-host balance for both the virus and the host.
Abstract: IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10−/− mice led to faster control of lytic viral replication, but this came at the expense of TNF-α mediated immunopathology. Taken together, our data show that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-adaptive immune cell crosstalk, thereby impacting beneficially on the ensuing virus-host balance for both the virus and the host.

80 citations

Journal ArticleDOI
01 Jul 2007
TL;DR: The laboratory has been interested in understanding the mechanisms of immune suppression, particularly in studying the interrelated functions of Tregs and TGF-β in immune regulation, and discusses the recent progress that is made.
Abstract: Multiple types of cells and cytokines are found that actively suppress immune responses, a function that is critical to maintain self-tolerance and immune homeostasis. Naturally occurring regulatory T cells (Tregs) and the pleiotropic cytokine transforming growth factor (TGF)-β are the best characterized. Dysregulation of either one leads to various immunopathologies under physiologic conditions, demonstrating their essential roles in immune suppression. Tregs and TGF-β play important roles in the development of lung-related immune disorders, such as asthma and allergy. Understanding the function and regulation of Tregs and TGF-β during immune responses offers therapeutic promise for the control of these diseases. Our laboratory has been interested in understanding the mechanisms of immune suppression, particularly in studying the interrelated functions of Tregs and TGF-β in immune regulation. In this article, we discuss the recent progress that we have made in the relevant areas.

80 citations

Journal ArticleDOI
TL;DR: It is determined that IFN-γ and perforin are critical elements in the Vγ4-mediated antitumor immune response, and a protective role of activated Vγ2 and Vγ1 γδ T cells is identified, with possible implications for tumor immune therapy.
Abstract: We previously demonstrated that gammadelta T cells played an important role in tumor immune surveillance by providing an early source of IFN-gamma. The precise role of different subsets of gammadelta T cells in the antitumor immune response, however, is unknown. Vgamma1 and Vgamma4 gammadelta T cells are the principal subsets of peripheral lymphoid gammadelta T cells and they might play distinct roles in tumor immunity. In support of this, we observed that reconstitution of TCRdelta(-/-) mice with Vgamma4, but not Vgamma1, gammadelta T cells restored the antitumor response. We also found that these effects were exerted by the activated (CD44(high)) portion of Vgamma4 gammadelta T cells. We further determined that IFN-gamma and perforin are critical elements in the Vgamma4-mediated antitumor immune response. Indeed, CD44(high) Vgamma4 gammadelta T cells produced significantly more IFN-gamma and perforin on activation, and showed greater cytolytic activity than did CD44(high) Vgamma1 gammadelta T cells, apparently due to the high level of eomesodermin (Eomes) in these activated Vgamma4 gammadelta T cells. Consistently, transfection of dominant-negative Eomes in Vgamma4 gammadelta T cells diminished the level of IFN-gamma secretion, indicating a critical role of Eomes in the effector function of these gammadelta T cells. Our results thus reveal distinct functions of Vgamma4 and Vgamma1 gammadelta T cells in antitumor immune response, and identify a protective role of activated Vgamma4 gammadelta T cells, with possible implications for tumor immune therapy.

79 citations

Journal ArticleDOI
TL;DR: Data show that TLR3 has a major role in the development of ARDS-like pathology in the absence of a viral pathogen.
Abstract: Rationale: Acute respiratory distress syndrome (ARDS) manifests clinically as a consequence of septic and/or traumatic injury in the lung. Oxygen therapy remains a major therapeutic intervention in ARDS, but this can contribute further to lung damage. Patients with ARDS are highly susceptible to viral infection and it may be due to altered Toll-like receptor (TLR) expression.Objectives: To evaluate the role of TLR3 in ARDS.Methods: TLR3 expression and signaling was determined in airway epithelial cells after in vitro hyperoxia challenge. Using a murine model of hyperoxia-induced lung injury, the role of TLR3 was determined using either TLR3-gene deficient mice or a specific neutralizing antibody directed to TLR3.Measurements and Main Results: Increased TLR3 expression was observed in airway epithelial cells from patients with ARDS. Further, hyperoxic conditions alone were a major stimulus for increased TLR3 expression and activation in cultured human epithelial cells. Interestingly, TLR3−/− mice exhibited...

79 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations