scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: IL-17A-mediated protection in the CD45RBhi transfer model of colitis is demonstrated and T cells are identified as not only the source but also a target of IL-17 in vivo.
Abstract: Interleukin 23 (IL-23) and IL-17 have been linked to the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease. Yet as an important function for IL-23 is emerging, the function of IL-17 in inflammatory bowel disease remains unclear. Here we demonstrate IL-17A-mediated protection in the CD45RBhi transfer model of colitis. An accelerated wasting disease elicited by T cells deficient in IL-17A correlated with higher expression of genes encoding T helper type 1-type cytokines in colon tissue. IL-17A also modulated T helper type 1 polarization in vitro. Furthermore, T cells deficient in the IL-17 receptor elicited an accelerated, aggressive wasting disease relative to that elicited by wild-type T cells in recipient mice. Our data demonstrate a protective function for IL-17 and identify T cells as not only the source but also a target of IL-17 in vivo.

726 citations

Journal ArticleDOI
25 May 2007-Immunity
TL;DR: It is shown that mice with a T cell-specific deletion of the Tgfb1 gene developed lethal immunopathology in multiple organs, and this development was associated with enhanced T cell proliferation, activation, and CD4+ T cell differentiation into T helper 1 (Th1) and Th2 cells.

712 citations

Journal ArticleDOI
TL;DR: The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr 1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation.
Abstract: CD4(+) type 1 T regulatory (Tr1) cells are induced in the periphery and have a pivotal role in promoting and maintaining tolerance. The absence of surface markers that uniquely identify Tr1 cells has limited their study and clinical applications. By gene expression profiling of human Tr1 cell clones, we identified the surface markers CD49b and lymphocyte activation gene 3 (LAG-3) as being stably and selectively coexpressed on mouse and human Tr1 cells. We showed the specificity of these markers in mouse models of intestinal inflammation and helminth infection and in the peripheral blood of healthy volunteers. The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation. The use of these markers makes it feasible to track Tr1 cells in vivo and purify Tr1 cells for cell therapy to induce or restore tolerance in subjects with immune-mediated diseases.

676 citations

Journal ArticleDOI
03 Dec 2015-Cell
TL;DR: It is demonstrated that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles.

676 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in addition to the TLR pathways, ASC inflammasomes play a central role in adaptive immunity to influenza virus.
Abstract: Influenza virus infection is recognized by the innate immune system through Toll like receptor (TLR) 7 and retinoic acid inducible gene I. These two recognition pathways lead to the activation of type I interferons and resistance to infection. In addition, TLR signals are required for the CD4 T cell and IgG2a, but not cytotoxic T lymphocyte, responses to influenza virus infection. In contrast, the role of NOD-like receptors (NLRs) in viral recognition and induction of adaptive immunity to influenza virus is unknown. We demonstrate that respiratory infection with influenza virus results in the activation of NLR inflammasomes in the lung. Although NLRP3 was required for inflammasome activation in certain cell types, CD4 and CD8 T cell responses, as well as mucosal IgA secretion and systemic IgG responses, required ASC and caspase-1 but not NLRP3. Consequently, ASC, caspase-1, and IL-1R, but not NLRP3, were required for protective immunity against flu challenge. Furthermore, we show that caspase-1 inflammasome activation in the hematopoietic, but not stromal, compartment was required to induce protective antiviral immunity. These results demonstrate that in addition to the TLR pathways, ASC inflammasomes play a central role in adaptive immunity to influenza virus.

665 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations