scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that TLR7 signaling dictates either clearance or establishment of life-long chronic infection by lymphocytic choriomeningitis virus (LCMV) Cl 13 but does not affect clearance of the acute LCMV Armstrong 53b strain.

72 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the negative regulation of Th2 cytokine production by the JNK1 signaling pathway is essential for generating Th1-polarized immunity against intracellular pathogens, such as Leishmania major.
Abstract: c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase that plays important regulatory roles in helper T cell differentiation. In the current study, we used Jnk1-deficient mice to examine the function of JNK during an in vivo pathogenic infection, leishmaniasis, which is strongly influenced by Th1/Th2 effector mechanisms. The data show that Jnk1-deficient mice, despite their usually genetically resistant background, were unable to resolve Leishmania infections. Jnk1-/- mice displayed reduced delayed-type hypersensitivity in response to the pathogen, which was associated with a T cell defect. We found that, although these mice can direct an apparent Th1-response, there is also simultaneous generation of Leishmania-specific Th2 responses, which possibly down-modulate protective Th1-mediated immune function. These findings demonstrate that the negative regulation of Th2 cytokine production by the JNK1 signaling pathway is essential for generating Th1-polarized immunity against intracellular pathogens, such as Leishmania major.

72 citations

Journal ArticleDOI
TL;DR: The authors show that, in mouse experimental colitis models, Nlrp1 inflammasome sensor activates IL-18 to reduce beneficial colonic Clostridiales species, thereby decreasing microbial butyrate and its protective effects on colitis.
Abstract: Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease

72 citations

Journal ArticleDOI
TL;DR: The data reveal that gzmB+CTL independently induce pro-apoptotic processes either via caspase-3/-7, leading to plasma membrane perturbance and ROS production or via Bid/Bak/Bax, resulting in cytochrome c release and that both pathways elicit loss of ΔΨm.
Abstract: Granzyme B (gzmB) of cytotoxic T lymphocytes (CTL) is essential for recovery from intracellular pathogens, but the molecular basis of its action is still unresolved. Here, we analyzed gzmB-mediated death pathways under physiological conditions using ex vivo virus-immune CTLs that express perf and gzmB, but not gzmA (gzmB(+)CTL). We show that gzmB(+)CTL abrogate target cell proliferation most likely by inducing cell death, independent of caspases and mitochondrial signaling. In addition, the data reveal that gzmB(+)CTL independently induce pro-apoptotic processes either via caspase-3/-7, leading to plasma membrane perturbance and ROS production or via Bid/Bak/Bax, resulting in cytochrome c release and that both pathways elicit loss of DeltaPsi(m). Our data provide evidence for a pleiotropic pro-apoptotic function of gzmB presumably to counteract evasion strategies of pathogens and to control tumors.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors identified major m6A "writers" as the top candidate genes regulating macrophage activation by LPS in an RNA binding protein focused CRISPR screening and confirmed that Mettl3-deficient macrophages exhibited reduced TNF-α production upon LPS stimulation in vitro.
Abstract: m6A RNA modification is implicated in multiple cellular responses. However, its function in the innate immune cells is poorly understood. Here, we identified major m6A “writers” as the top candidate genes regulating macrophage activation by LPS in an RNA binding protein focused CRISPR screening. We have confirmed that Mettl3-deficient macrophages exhibited reduced TNF-α production upon LPS stimulation in vitro. Consistently, Mettl3flox/flox;Lyzm-Cre mice displayed increased susceptibility to bacterial infection and showed faster tumor growth. Mechanistically, the transcripts of the Irakm gene encoding a negative regulator of TLR4 signaling were highly decorated by m6A modification. METTL3 deficiency led to the loss of m6A modification on Irakm mRNA and slowed down its degradation, resulting in a higher level of IRAKM, which ultimately suppressed TLR signaling–mediated macrophage activation. Our findings demonstrate a previously unknown role for METTL3-mediated m6A modification in innate immune responses and implicate the m6A machinery as a potential cancer immunotherapy target.

72 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations