scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: The results support the concept that the TCR can continue to signal after it is internalized from the cell surface, thereby enabling sustained signaling and cell proliferation.
Abstract: Prolonged T-cell receptor (TCR) signaling is required for the proliferation of T lymphocytes. Ligation of the TCR activates signaling, but also causes internalization of the TCR from the cell surface. How TCR signaling is sustained for many hours despite lower surface expression is unknown. Using genetic inhibition of endocytosis, we show here that TCR internalization promotes continued TCR signaling and T-lymphocyte proliferation. T-cell–specific deletion of dynamin 2, an essential component of endocytosis, resulted in reduced TCR signaling strength, impaired homeostatic proliferation, and the inability to undergo clonal expansion in vivo. Blocking endocytosis resulted in a failure to maintain mammalian target of rapamycin (mTOR) activity and to stably induce the transcription factor myelocytomatosis oncogene (c-Myc), which led to metabolic stress and a defect in cell growth. Our results support the concept that the TCR can continue to signal after it is internalized from the cell surface, thereby enabling sustained signaling and cell proliferation.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors attempt to reconcile the contrasting data by highlighting the many ways that the inflammasome contributes to intestinal homeostasis and pathology and exploring the potential role of alterations in the microbiota in these conflicting studies.
Abstract: Inflammasomes are large cytosolic protein complexes that detect infection and stress-associated signals and promote immediate inflammatory responses. In the intestine, activation of the inflammasome leads to an inflammatory response that is important for controlling enteric infections but can also result in pathological tissue damage. Recent studies have suggested that the inflammasome also regulates intestinal homeostasis through its effects on the intestinal microbiota. Notably, many conflicting studies have been published regarding the effect of inflammasome deficiencies on intestinal homeostasis. Here, we attempt to reconcile these contrasting data by highlighting the many ways that the inflammasome contributes to intestinal homeostasis and pathology and exploring the potential role of alterations in the microbiota in these conflicting studies.

43 citations

Journal ArticleDOI
TL;DR: Two CCGG sites, at homologous positions 54 nucleotides in front of the G gamma- and A gamma-globin genes respectively, are not cleaved by Msp I in DNA from several human tissues, although DNA from placenta, foetal liver and from some established cell lines is cut at these sites.
Abstract: The majority of the CCGG residues in the human gamma delta beta-globin gene locus are cleaved by Msp I, irrespective of the tissue of origin of the DNA, although these sites show differential sensitivity to Hap II as a result of methylation of the internal C residue of the cleavage site (ref 6). Two CCGG sites, at homologous positions 54 nucleotides in front of the G gamma- and A gamma-globin genes respectively, are not cleaved by Msp I in DNA from several human tissues, although DNA from placenta, foetal liver and from some established cell lines is cut at these sites. We have cloned the A gamma-globin gene from foetal blood DNA where the relevant CCGG site is not cut by Msp I. After cloning, the CCGG site can be cut by Msp I. The failure to cleave at this CCGG site in foetal blood DNA therefore, is not the result of a change in the DNA sequence of the cleavage site. Most likely the external C residue and perhaps both C residues are blocked by methylation at these two specific sites.

43 citations

Journal ArticleDOI
TL;DR: An important role of the inflammasome is indicated in innate immune recognition of RABV and increased viral replication in BMDCs derived from IFNAR-deficient mice resulted in significantly more IL-1β release.
Abstract: Inflammasome activation is important for the development of an effective host defense against many pathogens, including RNA viruses. However, the mechanism by which the inflammasome recognizes RNA viruses and its role in rabies virus (RABV) pathogenicity and immunogenicity remain poorly defined. To determine the function of the inflammasome in response to RABV infection, we infected murine bone marrow-derived dendritic cells (BMDCs) with RABV. Our results indicate that the infection of BMDCs with RABV induces both the production of pro-interleukin-1β (pro-IL-1β) and its processing, resulting in the secretion of active IL-1β through activation of the NLRP3-, ASC-, and caspase-1-dependent inflammasome. As previously shown for the induction of type I interferon by RABV, the induction of pro-IL-1β also depends upon IPS-1. We demonstrate that both the production of pro-IL-1β and activation of the inflammasome require viral replication. We also demonstrate that increased viral replication in BMDCs derived from IFNAR-deficient mice resulted in significantly more IL-1β release. Additionally, IL-1 receptor-deficient mice show an increase in RABV pathogenicity. Taken together, these results indicate an important role of the inflammasome in innate immune recognition of RABV.

43 citations

Journal ArticleDOI
TL;DR: The results emphasize the need for caution in the study of antigen-specific proliferation for B. burgdorferi, and spirochetes and recombinant outer surface proteins, OspA and OspB, were found to induce nonspecific proliferation of naive splenocytes from both strains of mice.
Abstract: Proliferative responses of naive splenocytes to Borrelia burgdorferi antigens from mice susceptible (C3H) and resistant (BALB) to Lyme borreliosis were investigated. B. burgdorferi spirochetes and recombinant outer surface proteins, OspA and OspB, were found to induce nonspecific proliferation of naive splenocytes from both strains of mice. Cell purification studies localized nonspecific proliferation to the B cell-enriched fraction. B. burgdorferi, OspA, and OspB were found to induce IgM and IgG synthesis in vitro. The mitogenic effect of B. burgdorferi was dissimilar to that of lipopolysaccharide (LPS), in that B cells from C3H/HeJ mice (LPS-unresponsive) responded at levels comparable to those from C3H/HeNCrlBr mice. These results emphasize the need for caution in the study of antigen-specific proliferation for B. burgdorferi.

43 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations