scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: A new in vivo function of Nod2 within the eye is revealed yet importantly, distinguishes NOD2‐dependent from NALP3‐dependent inflammation, as ocular inflammation in mice occurred independently of IL‐1β.
Abstract: Nucleotide-binding and oligomerization domain 2 (NOD2) belongs to the emerging Nod-like receptor (NLR) family considered important in innate immunity. Mutations in NOD2 cause Blau syndrome, an inherited inflammation of eye, joints, and skin. Mutations in a homologous region of another NLR member, NALP3, cause autoinflammation, wherein IL-1β plays a critical role. Here, we tested the hypothesis that IL-1β is a downstream mediator of NOD2-dependent ocular inflammation. We used a mouse model of NOD2-dependent ocular inflammation induced by muramyl dipeptide (MDP), the minimal bacterial motif sensed by NOD2. We report that MDP-induced ocular inflammation generates IL-1β and IL-18 within the eye in a NOD2- and caspase-1-dependent manner. Surprisingly, two critical measures of ocular inflammation, leukocyte rolling and leukocyte intravascular adherence, appear to be completely independent of IL-1 signaling effects, as caspase-1 and IL-1R1-deficient mice still developed ocular inflammation in response to MDP. In contrast to the eye, a diminished neutrophil response was observed in an in vivo model of MDP-induced peritonitis in caspase-1-deficient mice, suggesting that IL-1β is not essential in NOD2-dependent ocular inflammation, but it is involved, in part, in systemic inflammation triggered by NOD2 activation. This disparity may be influenced by IL-1R antagonist (IL-1Ra), as we observed differential IL-1Ra levels in the eye versus plasma at baseline levels and in response to MDP treatment. This report reveals a new in vivo function of NOD2 within the eye yet importantly, distinguishes NOD2-dependent from NALP3-dependent inflammation, as ocular inflammation in mice occurred independently of IL-1β.

36 citations

Journal ArticleDOI
TL;DR: It is shown that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis.
Abstract: Borrelia burgdorferi, the Lyme disease agent, causes joint inflammation in an experimental murine model. Inflammation occurs, in part, due to the ability of B. burgdorferi to induce the production of proinflammatory cytokines and a strong CD4+ T helper type 1 response. The mechanisms by which spirochetes induce these responses are not completely known, although transcription factors, such as NF-κB in phagocytic cells, initiate the proinflammatory cytokine burst. We show here that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis. B. burgdorferi Ags activated p38 MAP kinase in vitro, and the use of a specific inhibitor repressed the spirochete-induced production of TNF-α. The infection of mice that are deficient for a specific upstream activator of the kinase, MAP kinase kinase 3, resulted in diminished proinflammatory cytokine production and the development of arthritis, without compromising the ability of CD4+ T cells to respond to borrelial Ags or the production of specific Abs. Overall, these data indicated that the p38 MAP kinase pathway plays an important role in B. burgdorferi-elicited inflammation and point to potential new therapeutic approaches to the treatment of inflammation induced by the spirochete.

36 citations

Journal ArticleDOI
TL;DR: MKK6 deficiency suppresses inflammatory arthritis and joint destruction, suggesting it might be a therapeutic target for inflammation.
Abstract: Development of p38α inhibitors for rheumatoid arthritis has been hindered by toxicity and limited efficacy Therefore, we evaluated whether MKK6, an upstream kinase that regulates multiple p38 isoforms, might be an alternative therapeutic target in inflammatory arthritis Wild-type (WT), MKK6−/−, and MKK3−/− mice were administered K/B×N serum to induce arthritis Articular expression of activated kinases and cytokines was determined by Western blot, qPCR, ELISA, and multiplex analysis Immunoprecipitation and confocal microscopy experiments were performed to determine the subcellular location of MKK6, P-p38, and MAPKAPK2 (MK2) Arthritis scores were significantly lower in MKK6−/− mice compared with WT mice Joint destruction and osteoclast differentiation were lower in MKK6−/−, as were articular IL-6 and matrix metalloproteinase-3 expression Phospho-p38 levels were modestly decreased in the joints of arthritic MKK6−/− mice compared with WT but were significantly higher than MKK3−/− mice P-MK2 was low in MKK6−/− and MKK3−/− mice Uncoupled p38 and MK2 activation was also observed in cultured, MKK6−/− FLS and confirmed using kinase assays Immunoprecipitation assays and confocal microscopy showed that P-p38 and MK2 colocalized in activated WT but not MKK6−/− FLS Distinct patterns of cytokine production were observed in MKK6−/− and MKK3−/− cells MKK6 deficiency suppresses inflammatory arthritis and joint destruction, suggesting it might be a therapeutic target for inflammation Although MKK3 and MKK6 activate the p38 pathway, they regulate distinct subsets of proinflammatory cytokines MKK6 appears mainly to facilitate p38 and MK2 colocalization in the nucleus rather than to phosphorylate p38

35 citations

Journal ArticleDOI
TL;DR: The JNK1 signal transduction pathway in myeloid cells is identified to be a critical component of a regulatory circuit mediating inflammatory responses in autoimmune disease, providing further insights into the pivotal MAPK-regulated network of innate and adaptive cytokines in the progression to autoimmunity.
Abstract: Environmental insults such as microbial pathogens can contribute to the activation of autoreactive T cells, leading to inflammation of target organs and, ultimately, autoimmune disease. Various infections have been linked to multiple sclerosis and its animal counterpart, autoimmune encephalomyelitis. The molecular process by which innate immunity triggers autoreactivity is not currently understood. By using a mouse model of multiple sclerosis, we found that the genetic loss of the MAPK, c-Jun N-terminal kinase 1 (JNK1), enhances IL-10 production, rendering innate myeloid cells unresponsive to certain microbes and less capable of generating IL-17–producing, encephalitogenic T cells. Moreover, JNK1-deficient central nervous system myeloid cells are unable to respond to effector T cell inflammatory cytokines, preventing further progression to neuroinflammation. Thus, we have identified the JNK1 signal transduction pathway in myeloid cells to be a critical component of a regulatory circuit mediating inflammatory responses in autoimmune disease. Our findings provide further insights into the pivotal MAPK-regulated network of innate and adaptive cytokines in the progression to autoimmunity.

35 citations

Journal ArticleDOI
TL;DR: No sequence homology was detected between mtDNA of RD1A and the repetitive (A+T)-rich mtDNAs of two other petite mutants, either in DNA· DNA hybridization or in DNA · RNA hybridization using complementary RNA made with RNA polymerase of Escherichia coli.

35 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations