scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
01 Nov 1998-Immunity
TL;DR: It is demonstrated that islet-specific expression of TNFalpha in neonatal nonobese diabetic mice accelerated diabetes and inflammation can trigger autoimmunity by recruiting and activating dendritic cells/macrophages to present self-antigens to autoreactive T cells.

197 citations

Journal Article
TL;DR: In vivo blockade of CD40L-CD40 interactions may provide a highly beneficial approach to improving the outcome of allogeneic bone marrow transplantation.
Abstract: Alloreactive T cells require costimulatory signals via CD40 ligand (CD40L). The tissue-destructive properties of allogeneic CD4+ but not CD8+ T cells were inhibited by anti-CD40L mAb. Fewer CD4+ thoracic duct lymphocytes (TDL) were obtained in mAb-treated recipients. Kinetic studies revealed that CD4+ T cell expansion was reduced or delayed which may account, in part, for the partial graft-vs-host disease protective effect of anti-CD40L mAb. TDL were found to have diminished anti-host-specific proliferative responses. The frequency of donor TDL and splenocytes that expressed the Th1 cytokines IL-2, IL-12 p40, and IFN-gamma mRNA was markedly diminished in mAb-treated recipients, demonstrating that Th1-driven alloresponses were susceptible to CD40L targeting. Perforin mRNA-expressing T cells were undetectable in mAb-treated recipients, consistent with reduced in vivo lethality after the adoptive transfer of allogeneic CD4+ T cells. Similar findings were observed in both B cell-replete or -deficient recipients, indicating that allogeneic T cell expansion and priming can be sustained by a non-B cell, CD40+ host cell population. Mice receiving CD40L-deficient allogeneic CD4+ T cells had survival rates comparable to the rates of those given anti-CD40L mAb treatment. Because anti-CD40L mAb also was found to prevent host anti-donor-mediated marrow allograft rejection, in vivo blockade of CD40L-CD40 interactions may provide a highly beneficial approach to improving the outcome of allogeneic bone marrow transplantation.

197 citations

Journal ArticleDOI
17 Oct 2013-Immunity
TL;DR: A critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection is shown.

196 citations

Journal ArticleDOI
TL;DR: It is concluded that inflammasome components are present in HSC, can regulate a variety of HSC functions, and are required for the development of liver fibrosis.
Abstract: The inflammasome is a cytoplasmic multiprotein complex that has recently been identified in immune cells as an important sensor of signals released by cellular injury and death. Analogous to immune cells, hepatic stellate cells (HSC) also respond to cellular injury and death. Our aim was to establish whether inflammasome components were present in HSC and could regulate HSC functionality. Monosodium urate (MSU) crystals (100 μg/ml) were used to experimentally induce inflammasome activation in LX-2 and primary mouse HSC. Twenty-four hours later primary mouse HSC were stained with α-smooth muscle actin and visualized by confocal microscopy, and TGF-β and collagen1 mRNA expression was quantified. LX-2 cells were further cultured with or without MSU crystals for 24 h in a transwell chemotaxis assay with PDGF as the chemoattractant. We also examined inhibition of calcium (Ca2+) signaling in LX-2 cells treated with or without MSU crystals using caged inositol 1,4,5-triphosphate (IP3). Finally, we confirmed an important role of the inflammasome in experimental liver fibrosis by the injection of carbon tetrachloride (CCl4) or thioacetamide (TAA) in wild-type mice and mice lacking components of the inflammasome. Components of the inflammasome are expressed in LX-2 cells and primary HSC. MSU crystals induced upregulation of TGF-β and collagen1 mRNA and actin reorganization in HSCs from wild-type mice but not mice lacking inflammasome components. MSU crystals inhibited the release of Ca2+ via IP3 in LX-2 cells and also inhibited PDGF-induced chemotaxis. Mice lacking the inflammasome-sensing and adaptor molecules, NLRP3 and apoptosis-associated speck-like protein containing CARD, had reduced CCl4 and TAA-induced liver fibrosis. We concluded that inflammasome components are present in HSC, can regulate a variety of HSC functions, and are required for the development of liver fibrosis.

196 citations

Journal ArticleDOI
TL;DR: A transient blockade of T-cell activation with an antibody to CD40L infused into the animal at the time of adenovirus vector-mediated gene transfer led to stabilization of transgene expression and diminished production of neutralizing antibody, allowing readministration of vector.
Abstract: First-generation adenovirus vectors will have limited application in gene therapy for chronic diseases because of destructive host immune responses. Important immune effectors include CD8+ T cells, which mediate target cell destruction and ablate transgene expression, and B cells, which produce neutralizing antibodies that block effective readministration of vector. Previous studies indicated that activation of CD4+ T cells by virus capsid proteins is necessary for full realization of effector function of CD8+ T cells and B cells. In this paper, we present a strategy for preventing CD4+ T-cell activation by an adenovirus vector delivered to mouse liver and lung tissues which is based on interfering with T-cell priming via CD40 ligand-CD40 interactions. Adenovirus transgene expression was stabilized in mice genetically deficient in CD40 ligand (CD40L), and neutralizing antibody to adenovirus did not develop, allowing efficient readministration of vector. A transient blockade of T-cell activation with an antibody to CD40L infused into the animal at the time of adenovirus vector-mediated gene transfer led to stabilization of transgene expression and diminished production of neutralizing antibody, allowing readministration of vector. In vitro T-cell assays suggested that a block in the primary activation of CD4+ T cells was responsible for the lack of B-cell- and cytotoxic-T-cell-dependent responses. This suggests a strategy for improving the potential of adenovirus vectors based on administration of an antibody to CD40L at the time of vector administration.

195 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations