scispace - formally typeset
Search or ask a question
Author

Richard A. Flavell

Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & T cell. The author has an hindex of 231, co-authored 1328 publications receiving 205119 citations. Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: The immune response of caspase-1(-/-) mice to Listeria monocytogenes infection was normal and they successfully cleared the pathogen following secondary infection, in spite of a moderate skewing of cytokine profile to T(h)2 when compared to wild-type mice.
Abstract: Caspase-1 [IL-1beta-converting enzyme (ICE)] processes substrate precursor molecules to yield the biologically active form of IL-1beta and IL-18, both of which are considered to play important roles in the host defense by activation of both innate and adaptive immunity. We evaluated the immune response of caspase-1(-/-) mice to Listeria monocytogenes (LM) infection. LM eradication in the early phase of infection was impaired in the mutant mice with a prominent decrease in IL-18 and IFN-gamma production, but not in IL-12. Caspase-1(-/-) spleen cells including dendritic cells and NK cells produced less IFN-gamma in response to heat-killed LM than wild-type cells in vitro. IFN-gamma production and bactericidal activity in LM-infected caspase-1(-/-) mice was reconstituted to normal levels by adding back IL-18 at the initial phase of infection, suggesting that the lack of this cytokine is primarily responsible for the susceptibility of caspase-1(-/-) mice against LM infection. Moreover, IFN-gamma injection of caspase-1(-/-) mice corrected the deficiency in pathogen clearance. In contrast, LM-specific acquired immunity in caspase-1(-/-) mice was normal and they successfully cleared the pathogen following secondary infection, in spite of a moderate skewing of cytokine profile to T(h)2 when compared to wild-type mice. These data shed light on the importance of caspase-1-mediated IL-18 processing in innate immunity against facultative intracellular pathogens.

119 citations

Journal ArticleDOI
TL;DR: GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections, and reveal that GBPs support fast-kinetics processing and secretion of interleukin-1β and IL-18 by the NLRP3 inflammaome but are dispensable for the secretion of the same cytokines at later times postinfection.
Abstract: Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1β (IL-1β) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1β transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections.

118 citations

Journal ArticleDOI
TL;DR: It is concluded that TLR3 is essential to the induction of antiviral activity elicited by poly(I:C12U), which does not appear to be recognized by the cytosolic sensor of poly( I:C), melanoma differentiation-associated gene-5.
Abstract: In the wake of RNA virus infections, dsRNA intermediates are often generated. These viral pathogen-associated molecular patterns can be sensed by a growing number of host cell cytosolic proteins and TLR3, which contribute to the induction of antiviral defenses. Recent evidence indicates that melanoma differentiation-associated gene-5 is the prominent host component mediating IFN production after exposure to the dsRNA analog, poly(I:C). We have previously reported that Punta Toro virus (PTV) infection in mice is exquisitely sensitive to treatment with poly(I:C(12)U), a dsRNA analog that has a superior safety profile while maintaining the beneficial activity of the parental poly(I:C) in the induction of innate immune responses. The precise host factor(s) mediating protective immunity following its administration remain to be elucidated. To assess the role of TLR3 in this process, mice lacking the receptor were used to investigate the induction of protective immunity, type I IFNs, and IL-6 following treatment. Unlike wild-type mice, those lacking TLR3 were not protected against PTV infection following poly(I:C(12)U) therapy and failed to produce IFN-alpha, IFN-beta, and IL-6. In contrast, poly(I:C) treatment significantly protected TLR3(-/-) mice from lethal challenge despite some deficiencies in cytokine induction. There was no indication that the lack of protection was due to the fact that TLR3-deficient mice had a reduced capacity to fight infection because they were not found to be more susceptible to PTV. We conclude that TLR3 is essential to the induction of antiviral activity elicited by poly(I:C(12)U), which does not appear to be recognized by the cytosolic sensor of poly(I:C), melanoma differentiation-associated gene-5.

118 citations

Journal ArticleDOI
01 Jan 1984-Cell
TL;DR: Analysis of a class I gene (Q10), which maps to the Qa2,3 locus in the C57BL/10 mouse, reveals that it is almost identical to a cDNA clone isolated from a SWR/J mouse liver cDNA library, and it may encode liver-specific polypeptides of unknown function.

117 citations

Journal ArticleDOI
TL;DR: New evidence supporting a role for adaptive immune activation by recently identified NLR agonists is addressed, with a particular focus on Nlrp3, creating a platform for regulating secretion of interleukin‐1 family members.
Abstract: The innate immune system regulates initial responses to pathogen invasion through a set of conserved pattern recognition receptors (PRR). The best-characterized PRRs are the Toll-like receptors, which regulate not only the initial pathogen defense response, but also adaptive immune responses. Thus, insight into the function of PRRs has major implications for our understanding of the physiology of vaccination and the pathophysiology of human disease. Recent advances in our understanding of a new class of pattern recognition receptors–NOD-like receptors (NLR)–have similarly provided insight into both innate and adaptive immunity. In particular, the NLR Nlrp3 (also known as Nalp3 or Cias1) forms an intracellular multimolecular complex with active caspase-1, called an inflammasome, creating a platform for regulating secretion of interleukin-1 (IL-1) family members. Given the important role of IL-1 in inflammatory diseases, from gout to rheumatoid arthritis, the importance of understanding the regulation of such a cytokine cannot be underestimated. In this review, we address new evidence supporting a role for adaptive immune activation by recently identified NLR agonists, with a particular focus on Nlrp3. Basic questions in our understanding of Nlrp3 inflammasome activation are also presented.

117 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).

10,800 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations