scispace - formally typeset
Search or ask a question
Author

Richard A. Houghten

Bio: Richard A. Houghten is an academic researcher from Torrey Pines Institute for Molecular Studies. The author has contributed to research in topics: Solid-phase synthesis & Peptide. The author has an hindex of 68, co-authored 367 publications receiving 17959 citations. Previous affiliations of Richard A. Houghten include Zhejiang University & General Atomics.


Papers
More filters
Journal ArticleDOI
TL;DR: Through examination of the binding of these analogs to monoclonal antibodies raised against residues 75-110 of HA1, it was found that a single amino acid, aspartic acid at position 101, is of unique importance to the interaction.
Abstract: A novel yet simple method is described that facilitates the synthesis of large numbers of peptides to the extent that the synthesis process need no longer be the limiting factor in many studies involving peptides. By using the methods described, 10-20 mg of 248 different 13-residue peptides representing single amino acid variants of a segment of the hemagglutinin protein (HA1) have been prepared and characterized in less than 4 weeks. Through examination of the binding of these analogs to monoclonal antibodies raised against residues 75-110 of HA1, it was found that a single amino acid, aspartic acid at position 101, is of unique importance to the interaction. Two other residues, aspartic acid-104 and alanine-106, were found to play a lesser but significant role in the binding interaction. Other single positional residue variations appear to be of little or no importance.

1,805 citations

Journal ArticleDOI
07 Nov 1991-Nature
TL;DR: The precise identification of an antigenic determinant recognized by a monoclonal antibody as well as the straightforward development of new potent antimicrobial peptides are presented.
Abstract: Existing methods for the synthesis and screening of large numbers of peptides are limited by their inability to generate and screen the requisite number (millions) of individual peptides and/or their inability to generate unmodified free peptides in quantities able to interact in solution. We have circumvented these limitations by developing synthetic peptide combinatorial libraries composed of mixtures of free peptides in quantities which can be used directly in virtually all existing assay systems. The screening of these heterogeneous libraries, along with an iterative selection and synthesis process, permits the systematic identification of optimal peptide ligands. Starting with a library composed of more than 34 million hexa-peptides, we present here the precise identification of an antigenic determinant recognized by a monoclonal antibody as well as the straightforward development of new potent antimicrobial peptides.

1,544 citations

Journal ArticleDOI
TL;DR: The benefits, challenges, and opportunities of using antimicrobial peptides against multidrug-resistant pathogens are identified, advances in the deployment of novel promising antimacterial peptides are highlighted, and the needs and priorities in designing focused development strategies taking into account the most advanced tools available are underlined.
Abstract: Accelerating growth and global expansion of antimicrobial resistance has deepened the need for discovery of novel antimicrobial agents. Antimicrobial peptides have clear advantages over conventional antibiotics which include slower emergence of resistance, broad-spectrum antibiofilm activity, and the ability to favourably modulate the host immune response. Broad bacterial susceptibility to antimicrobial peptides offers an additional tool to expand knowledge about the evolution of antimicrobial resistance. Structural and functional limitations, combined with a stricter regulatory environment, have hampered the clinical translation of antimicrobial peptides as potential therapeutic agents. Existing computational and experimental tools attempt to ease the preclinical and clinical development of antimicrobial peptides as novel therapeutics. This Review identifies the benefits, challenges, and opportunities of using antimicrobial peptides against multidrug-resistant pathogens, highlights advances in the deployment of novel promising antimicrobial peptides, and underlines the needs and priorities in designing focused development strategies taking into account the most advanced tools available.

432 citations

Journal ArticleDOI
TL;DR: An enzyme derepression assay is developed, based on overcoming XIAP-mediated suppression of Caspase-3, and mixture-based combinatorial chemical libraries are screened for compounds that reversed XI AP-mediated inhibition of Cazase- 3, identifying a class of polyphenylureas with XIAP -inhibitory activity.

427 citations

Journal ArticleDOI
TL;DR: The concepts of drug repurposing, polypharmacology, chemogenomics, phenotypic screening and high-throughput in vivo testing of mixture-based libraries in an integrated manner are discussed.

384 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.
Abstract: Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

3,556 citations

Journal ArticleDOI
TL;DR: It is the right time for medical societies and public health regulators to consider the causal role of human papillomavirus infections in cervical cancer and to define its preventive and clinical implications.
Abstract: The causal role of human papillomavirus infections in cervical cancer has been documented beyond reasonable doubt. The association is present in virtually all cervical cancer cases worldwide. It is the right time for medical societies and public health regulators to consider this evidence and to define its preventive and clinical implications. A comprehensive review of key studies and results is presented.

3,333 citations

Journal ArticleDOI
TL;DR: Two complementary strategies can be used in the fabrication of molecular biomaterials as discussed by the authors : chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly.
Abstract: Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.

3,125 citations

Patent
29 Jun 2001
TL;DR: In this article, a structural signal called for the display of the protein on the outer surface of a chosen bacterial cell, bacterial spore or phage (genetic package) is introduced into a genetic package.
Abstract: In order to obtain a novel binding protein against a chosen target, DNA molecules, each encoding a protein comprising one of a family of similar potential binding domains and a structural signal calling for the display of the protein on the outer surface of a chosen bacterial cell, bacterial spore or phage (genetic package) are introduced into a genetic package. The protein is expressed and the potential binding domain is displayed on the outer surface of the package. The cells or viruses bearing the binding domains which recognize the target molecule are isolated and amplified. The successful binding domains are then characterized. One or more of these successful binding domains is used as a model for the design of a new family of potential binding domains, and the process is repeated until a novel binding domain having a desired affinity for the target molecule is obtained. In one embodiment, the first family of potential binding domains is related to bovine pancreatic trypsin inhibitor, the genetic package is M13 phage, and the protein includes the outer surface transport signal of the M13 gene III protein.

3,093 citations

Journal ArticleDOI
TL;DR: There is increased understanding of the pathways involved in protein aggregation, and some recent clues have emerged as to the molecular mechanisms of cellular toxicity, leading to approaches toward rational therapeutics.
Abstract: Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and prion diseases are increasingly being realized to have common cellular and molecular mechanisms including protein aggregation and inclusion body formation. The aggregates usually consist of fibers containing misfolded protein with a beta-sheet conformation, termed amyloid. There is partial but not perfect overlap among the cells in which abnormal proteins are deposited and the cells that degenerate. The most likely explanation is that inclusions and other visible protein aggregates represent an end stage of a molecular cascade of several steps, and that earlier steps in the cascade may be more directly tied to pathogenesis than the inclusions themselves. For several diseases, genetic variants assist in explaining the pathogenesis of the more common sporadic forms and developing mouse and other models. There is now increased understanding of the pathways involved in protein aggregation, and some recent clues have emerged as to the molecular mechanisms of cellular toxicity. These are leading to approaches toward rational therapeutics.

2,926 citations