scispace - formally typeset
Search or ask a question
Author

Richard A. Lempicki

Other affiliations: National Institutes of Health
Bio: Richard A. Lempicki is an academic researcher from Science Applications International Corporation. The author has contributed to research in topics: Gene expression & T cell. The author has an hindex of 47, co-authored 93 publications receiving 59757 citations. Previous affiliations of Richard A. Lempicki include National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

31,015 citations

Journal ArticleDOI
TL;DR: The survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
Abstract: Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.

13,102 citations

Journal ArticleDOI
TL;DR: DAMID is a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries that assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.
Abstract: The distributed nature of biological knowledge poses a major challenge to the interpretation of genome-scale datasets, including those derived from microarray and proteomic studies. This report describes DAVID, a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries. Lists of gene or protein identifiers are rapidly annotated and summarized according to shared categorical data for Gene Ontology, protein domain, and biochemical pathway membership. DAVID assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.

8,849 citations

Journal ArticleDOI
TL;DR: The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules, for efficient interpretation of gene lists in a network context.
Abstract: The DAVID Gene Functional Classification Tool http://david.abcc.ncifcrf.gov uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretation of gene lists in a network context.

2,067 citations

Journal ArticleDOI
TL;DR: EASE is a customizable software application for rapid biological interpretation of gene lists that result from the analysis of microarray, proteomics, SAGE and other high-throughput genomic data and is robust to varying methods of normalization, intensity calculation and statistical selection of genes.
Abstract: EASE is a customizable software application for rapid biological interpretation of gene lists that result from the analysis of microarray, proteomics, SAGE and other high-throughput genomic data. The biological themes returned by EASE recapitulate manually determined themes in previously published gene lists and are robust to varying methods of normalization, intensity calculation and statistical selection of genes. EASE is a powerful tool for rapidly converting the results of functional genomics studies from 'genes' to 'themes'.

1,985 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

31,015 citations

Journal ArticleDOI
TL;DR: An R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters and can be easily extended to other species and ontologies is presented.
Abstract: Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters The analysis module and visualization module were combined into a reusable workflow Currently, clusterProfiler supports three species, including humans, mice, and yeast Methods provided in this package can be easily extended to other species and ontologies The clusterProfiler package is released under Artistic-20 License within Bioconductor project The source code and vignette are freely available at http://bioconductororg/packages/release/bioc/html/clusterProfilerhtml

16,644 citations

Journal ArticleDOI
TL;DR: The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis that includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software.
Abstract: Correlation networks are increasingly being used in bioinformatics applications For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets These methods have been successfully applied in various biological contexts, eg cancer, mouse genetics, yeast genetics, and analysis of brain imaging data While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software Along with the R package we also present R software tutorials While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings The WGCNA package provides R functions for weighted correlation network analysis, eg co-expression network analysis of gene expression data The R package along with its source code and additional material are freely available at http://wwwgeneticsuclaedu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA

14,243 citations

Journal ArticleDOI
TL;DR: The survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
Abstract: Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.

13,102 citations

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations