scispace - formally typeset
Search or ask a question
Author

Richard B. Ivry

Bio: Richard B. Ivry is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Motor learning & Transcranial magnetic stimulation. The author has an hindex of 87, co-authored 314 publications receiving 28536 citations. Previous affiliations of Richard B. Ivry include Massachusetts Institute of Technology & United States Department of Veterans Affairs.


Papers
More filters
Book
01 Jan 1998
TL;DR: In this paper, three leading figures in the field of cognitive neuroscience provide an engaging, narrative-driven overview of this path-breaking field, taking a highly interdisciplinary approach, the authors balance cognitive theory, with neuroscientific and neuropsychological evidence to reveal what we currently know about how the human mind works and to encourage students to think like cognitive neuroscientists.
Abstract: Three leading figures in the field of cognitive neuroscience provide an engaging, narrative-driven overview of this path-breaking field. Taking a highly interdisciplinary approach, the authors balance cognitive theory, with neuroscientific and neuropsychological evidence to reveal what we currently know about how the human mind works and to encourage students to think like cognitive neuroscientists. The text has been reorganised to move more seamlessly from micro to macro level topics, and its underlying pedagogy strengthened in order to make it an even more effective teaching tool. (Presentation editeur)

1,338 citations

Journal ArticleDOI
TL;DR: The results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.
Abstract: This study investigated the effects of different types of neurological deficits on timing functions. The performance of Parkinson, cerebellar, cortical, and peripheral neuropathy patients was compared to age-matched control subjects on two separate measures of timing functions. The first task involved the production of timed intervals in which the subjects attempted to maintain a simple rhythm. The second task measured the subjects' perceptual ability to discriminate between small differences in the duration of two intervals. The primacy of the cerebellum in timing functions was demonstrated by the finding that these were the only patients who showed a deficit in both the production and perception of timing tasks. The cerebellar group was found to have increased variability in performing rhythmic tapping and they were less accurate than the other groups in making perceptual discriminations regarding small differences in duration. Critically, this perceptual deficit appears to be specific to the perception of time since the cerebellar patients were unaffected in a control task measuring the perception of loudness. It is argued that the operation of a timing mechanism can be conceptualized as an isolable component of the motor control system. Furthermore, the results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.

1,288 citations

Journal ArticleDOI
TL;DR: This review summarizes recent investigations of temporal processing and outlines an alternative hypothesis in which the basal ganglia as a specialized timing system is associated with decision processes.

754 citations

Journal ArticleDOI
TL;DR: Learning-related increases of cerebral blood flow were located in contralateral motor effector areas including motor cortex, supplementary motor area, and putamen, consistent with the hypothesis that nondeclarative motor learning occurs in cerebral areas that control limb movements.
Abstract: The brain localization of motor sequence learning was studied in normal subjects with positron emission tomography. Subjects performed a serial reaction time (SRT) task by responding to a series of stimuli that occurred at four different spatial positions. The stimulus locations were either determined randomly or according to a 6-element sequence that cycled continuously. The SRT task was performed under two conditions. With attentional interference from a secondary counting task there was no development of awareness of the sequence. Learning-related increases of cerebral blood flow were located in contralateral motor effector areas including motor cortex, supplementary motor area, and putamen, consistent with the hypothesis that nondeclarative motor learning occurs in cerebral areas that control limb movements. Additional cortical sites included the rostral prefrontal cortex and parietal cortex. The SRT learning task was then repeated with a new sequence and no attentional interference. In this condition, 7 of 12 subjects developed awareness of the sequence. Learning-related blood flow increases were present in right dorsolateral prefrontal cortex, right premotor cortex, right ventral putamen, and biparieto-occipital cortex. The right dorsolateral prefrontal and parietal areas have been previously implicated in spatial working memory and right prefrontal cortex is also implicated in retrieval tasks of verbal episodic memory. Awareness of the sequence at the end of learning was associated with greater activity in bilateral parietal, superior temporal, and right premotor cortex. Motor learning can take place in different cerebral areas, contingent on the attentional demands of the task.

709 citations

Journal ArticleDOI
TL;DR: It is concluded that the lateral regions of the cerebellum are critical for the accurate functioning of an internal timing system.
Abstract: In a previous study (Ivry and Keele, in press), cerebellar patients were found to be impaired on both a motor and a perceptual task which required accurate timing. This report presents case study analyses of seven patients with focal lesions in the cerebellum. The lesions were predominantly in the lateral, hemispheric regions for four of the patients. For the remaining three patients, the lesions were centered near the medial zone of the cerebellum. The clinical evaluation of the patients also was in agreement with the different lesion foci: lateral lesions primarily impaired fine motor coordination, especially apparent in movements with the distal extremities and medial lesions primarily disturbed balance and gait. All of the patients were found to have increased variability in performing rhythmic tapping when tapping with an effector (finger or foot) ipsilateral to the lesion in comparison to their performance with a contralateral effector. Separable estimates of a central timekeeper component and an implementation component were derived from the total variability scores following a model developed by Wing and Kristofferson (1973). This analysis indicated that the poor performance of patients with lateral lesions can be attributed to a deficit in the central timing process. In contrast, patients with medial lesions are able to accurately determine when to make a response, but are unable to implement the response at the desired time. A similar dissociation between the lateral and medial regions has been observed on a time perception task in patients with cerebellar atrophy. It is concluded that the lateral regions of the cerebellum are critical for the accurate functioning of an internal timing system.

649 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: Illustration de trois fonctions principales qui sont predominantes dans l'etude de l'intervention de l'sattention dans les processus cognitifs: 1) orientation vers des evenements sensoriels; 2) detection des signaux par processus focal; 3) maintenir la vigilance en etat d'alerte
Abstract: : The concept of attention as central to human performance extends back to the start of experimental psychology, yet even a few years ago, it would not have been possible to outline in even a preliminary form a functional anatomy of the human attentional system. New developments in neuroscience have opened the study of higher cognition to physiological analysis, and have revealed a system of anatomical areas that appear to be basic to the selection of information for focal (conscious) processing. The importance of attention is its unique role in connecting the mental level of description of processes used in cognitive science with the anatomical level common in neuroscience. Sperry describes the central role that mental concepts play in understanding brain function. As is the case for sensory and motor systems of the brain, our knowledge of the anatomy of attention is incomplete. Nevertheless, we can now begin to identify some principles of organization that allow attention to function as a unified system for the control of mental processing. Although many of our points are still speculative and controversial, we believe they constitute a basis for more detailed studies of attention from a cognitive-neuroscience viewpoint. Perhaps even more important for furthering future studies, multiple methods of mental chronometry, brain lesions, electrophysiology, and several types of neuro-imaging have converged on common findings.

7,237 citations