scispace - formally typeset
Search or ask a question
Author

Richard B. Miles

Bio: Richard B. Miles is an academic researcher from Texas A&M University. The author has contributed to research in topics: Laser & Rayleigh scattering. The author has an hindex of 78, co-authored 759 publications receiving 25239 citations. Previous affiliations of Richard B. Miles include Pierre-and-Marie-Curie University & Langley Research Center.


Papers
More filters
Journal ArticleDOI
01 Apr 1996-Neuron
TL;DR: Hippocampal synaptic inhibition is mediated by distinct groups of inhibitory cells that may differentially control dendritic electrogenesis and axonal output of hippocampal pyramidal cells.

945 citations

Journal ArticleDOI
15 Nov 2002-Science
TL;DR: A spontaneous, rhythmic activity initiated in the subiculum of slices from patients with temporal lobe epilepsy was described, similar to interictal discharges of patient electroencephalograms.
Abstract: The origin and mechanisms of human interictal epileptic discharges remain unclear. Here, we describe a spontaneous, rhythmic activity initiated in the subiculum of slices from patients with temporal lobe epilepsy. Synchronous events were similar to interictal discharges of patient electroencephalograms. They were suppressed by antagonists of either glutamatergic or γ-aminobutyric acid (GABA)–ergic signaling. The network of neurons discharging during population events comprises both subicular interneurons and a subgroup of pyramidal cells. In these pyramidal cells, GABAergic synaptic events reversed at depolarized potentials. Depolarizing GABAergic responses in neurons downstream to the sclerotic CA1 region contribute to human interictal activity.

930 citations

Book
01 May 1991
TL;DR: Using a combined experimental-theoretical approach unique in neuroscience, the authors present important new techniques for the physiological reconstruction of a large biological neuronal network in the CA3 hippocampal region in vitro.
Abstract: From the Publisher: The questions of how a large population of neurons in the brain functions, how synchronized firing of neurons is achieved, and what factors regulate how many and which neurons fire under different conditions form the central theme of this book. Using a combined experimental-theoretical approach unique in neuroscience, the authors present important new techniques for the physiological reconstruction of a large biological neuronal network. They begin by discussing experimental studies of the CA3 hippocampal region in vitro, focusing on single-cell and synaptic electrophysiology, particularly the effects a single neuron exerts on its neighbors. This is followed by a description of a computer model of the system, first for individual cells then for the entire detailed network, and the model is compared with experiments under a variety of conditions. The results shed significant light into the mechanisms of epilepsy, electroencephalograms, and biological oscillations and provide an excellent test case for theories of neural networks.

704 citations

Journal ArticleDOI
TL;DR: After these alterations, tonic depolarization of the soma leads to adapting repetitive firing, whereas stimulation of the distal dendrites leads to bursting, and a critical set of parameters concerns the regulation of the pool of intracellular [Ca2+] that interacts with membrane channels (gK(C) and gK(AHP)), particularly in the dendrite.
Abstract: 1. We have developed a 19-compartment cable model of a guinea pig CA3 pyramidal neuron. Each compartment is allowed to contain six active ionic conductances: gNa, gCa, gK(DR) (where DR stands for delayed rectifier), gK(A), gK(AHP), and gK(C). THe conductance gCa is of the high-voltage activated type. The model kinetics for the first five of these conductances incorporate voltage-clamp data obtained from isolated hippocampal pyramidal neurons. The kinetics of gK(C) are based on data from bullfrog sympathetic neurons. The time constant for decay of submembrane calcium derives from optical imaging of Ca signals in Purkinje cell dendrites. 2. To construct the model from available voltage-clamp data, we first reproduced current-clamp records from a model isolated neuron (soma plus proximal dendrites). We next assumed that ionic channel kinetics in the dendrites were the same as in the soma. In accord with dendritic recordings and calcium-imaging data, we also assumed that significant gCa occurs in dendrites. We then attached sections of basilar and apical dendritic cable. By trial and error, we found a distribution (not necessarily unique) of ionic conductance densities that was consistent with current-clamp records from the soma and dendrites of whole neurons and from isolated apical dendrites. 3. The resulting model reproduces the Ca(2+)-dependent spike depolarizing afterpotential (DAP) recorded after a stimulus subthreshold for burst elicitation. 4. The model also reproduces the behavior of CA3 pyramidal neurons injected with increasing somatic depolarizing currents: low-frequency (0.3-1.0 Hz) rhythmic bursting for small currents, with burst frequency increasing with current magnitude; then more irregular bursts followed by afterhyperpolarizations (AHPs) interspersed with brief bursts without AHPs; and finally, rhythmic action potentials without bursts. 5. The model predicts the existence of still another firing pattern during tonic depolarizing dendritic stimulation: brief bursts at less than 1 to approximately 12 Hz, a pattern not observed during somatic stimulation. These bursts correspond to rhythmic dendritic calcium spikes. 6. The model CA3 pyramidal neuron can be made to resemble functionally a CA1 pyramidal neuron by increasing gK(DR) and decreasing dendritic gCa and gK(C). Specifically, after these alterations, tonic depolarization of the soma leads to adapting repetitive firing, whereas stimulation of the distal dendrites leads to bursting. 7. A critical set of parameters concerns the regulation of the pool of intracellular [Ca2+] that interacts with membrane channels (gK(C) and gK(AHP)), particularly in the dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)

692 citations

Journal ArticleDOI
TL;DR: It is observed that all cells that were hyperpolarized during interictal events were immunopositive for KCC2, whereas the majority of depolarized cells were immunonegative.
Abstract: Changes in chloride (Cl-) homeostasis may be involved in the generation of some epileptic activities. In this study, we asked whether Cl- homeostasis, and thus GABAergic signaling, is altered in tissue from patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis. Slices prepared from this human tissue generated a spontaneous interictal-like activity that was initiated in the subiculum. Records from a minority of subicular pyramidal cells revealed depolarizing GABA(A) receptor-mediated postsynaptic events, indicating a perturbed Cl- homeostasis. We assessed possible contributions of changes in expression of the potassium-chloride cotransporter KCC2. Double in situ hybridization showed that mRNA for KCC2 was absent from approximately 30% of CaMKIIalpha (calcium/calmodulin-dependent protein kinase IIalpha)-positive subicular pyramidal cells. Combining intracellular recordings with biocytin-filled electrodes and KCC2 immunochemistry, we observed that all cells that were hyperpolarized during interictal events were immunopositive for KCC2, whereas the majority of depolarized cells were immunonegative. Bumetanide, at doses that selectively block the chloride-importing potassium-sodium-chloride cotransporter NKCC1, produced a hyperpolarizing shift in GABA(A) reversal potentials and suppressed interictal activity. Changes in Cl- transporter expression thus contribute to human epileptiform activity, and molecules acting on these transporters may be useful antiepileptic drugs.

584 citations


Cited by
More filters
Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Book
01 Oct 2006
TL;DR: This book explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition, providing a link between the two disciplines.
Abstract: This book explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology "Dynamical Systems in Neuroscience" presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties The book introduces dynamical systems starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems Each chapter proceeds from the simple to the complex, and provides sample problems at the end The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum - or taught by math or physics department in a way that is suitable for students of biology This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience

3,683 citations

Journal ArticleDOI
TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Abstract: Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

3,366 citations

Journal ArticleDOI
TL;DR: The general conclusion is that alpha ERS plays an active role for the inhibitory control and timing of cortical processing whereas ERD reflects the gradual release of inhibition associated with the emergence of complex spreading activation processes.

3,261 citations