scispace - formally typeset
Search or ask a question
Author

Richard Berger

Bio: Richard Berger is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Laser & Inertial confinement fusion. The author has an hindex of 36, co-authored 144 publications receiving 5377 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest priority prerequisite for proceeding with construction of an ignition-scale laser facility as mentioned in this paper.
Abstract: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

1,601 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the targets, the modeling that was used to design them, and the modeling done to set specifications for the laser system in the proposed National Ignition Facility.
Abstract: Several targets are described that in simulations give yields of 1–30 MJ when indirectly driven by 0.9–2 MJ of 0.35 μm laser light. The article describes the targets, the modeling that was used to design them, and the modeling done to set specifications for the laser system in the proposed National Ignition Facility. Capsules with beryllium or polystyrene ablators are enclosed in gold hohlraums. All the designs utilize a cryogenic fuel layer; it is very difficult to achieve ignition at this scale with a noncryogenic capsule. It is necessary to use multiple bands of illumination in the hohlraum to achieve sufficiently uniform x‐ray irradiation, and to use a low‐Z gas fill in the hohlraum to reduce filling of the hohlraum with gold plasma. Critical issues are hohlraum design and optimization, Rayleigh–Taylor instability modeling, and laser–plasma interactions.

324 citations

Journal ArticleDOI
TL;DR: In this paper, multidimensional fluid simulations of the growth and saturation of stimulated Brillouin (SBS) and Raman backscattering (SRS) instabilities driven by a nonuniform incident laser beam are presented.
Abstract: In a number of experiments, stimulated Brillouin (SBS) or Raman backscattering (SRS) has been observed to be much more vigorous than the other although the expectations based on linear gain exponents are that they should both be reflecting large amounts of incident light. Multidimensional fluid simulations of the growth and saturation of these two instabilities driven by a nonuniform incident laser beam are presented. On the fast time scale, the nonlinear saturation occurs via an anomalous damping inspired by fundamental studies of Langmuir turbulence [D. F. DuBois et al., Bull. Am. Phys. Soc. 41, 1531 (1996)] and acoustic wave turbulence [B. I. Cohen et al., Phys. Plasmas 4, 956 (1997)]. Over a longer time scale, SRS and SBS are limited by quasilinear processes such as flows induced by the transfer of momentum from the light to the plasma and ion temperature increases caused by a loss of light energy in SBS. The simulations show a reduction of the SBS reflectivity under conditions of strong SRS reflectiv...

163 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the scattering of laser light by SBS and SRS as a function of beam smoothing and plasma conditions in the National Ignition Facility (NIF).
Abstract: Scattering of laser light by stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) is a concern for indirect drive inertial confinement fusion (ICF). The hohlraum designs for the National Ignition Facility (NIF) raise particular concerns due to the large scale and homogeneity of the plasmas within them. Experiments at Nova have studied laser–plasma interactions within large scale length plasmas that mimic many of the characteristics of the NIF hohlraum plasmas. Filamentation and scattering of laser light by SBS and SRS have been investigated as a function of beam smoothing and plasma conditions. Narrowly collimated SRS backscatter has been observed from low density, low‐Z, plasmas, which are representative of the plasma filling most of the NIF hohlraum. SBS backscatter is found to occur in the high‐Z plasma of gold ablated from the wall. Both SBS and SRS are observed to be at acceptable levels in experiments using smoothing by spectral dispersion (SSD).

126 citations

Journal ArticleDOI
TL;DR: In this article, the mode frequencies and Landau damping of two dominant ion-acoustic modes in CH plasmas are calculated by numerical solution of the kinetic dispersion relation.
Abstract: The kinetic theory of ion‐acoustic waves in multi‐ion‐species plasmas is discussed. Particular application is made to hydrocarbon (CH) plasmas, which are widely used in laser–plasma experiments. The mode frequencies and Landau damping of the two, dominant, ion‐acoustic modes in CH plasmas are calculated by numerical solution of the kinetic dispersion relation. In addition, some useful results are obtained analytically from expansions of the kinetic dispersion relation and from fluid models. However, these results disagree with the numerical results in domains of particular practical interest. When ion temperatures exceed two‐tenths of the electron temperature, the least damped mode is the one with the smaller phase velocity, and this mode is then found to dominate the ponderomotive response of the CH plasma.

121 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

Journal ArticleDOI
TL;DR: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest priority prerequisite for proceeding with construction of an ignition-scale laser facility as mentioned in this paper.
Abstract: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

1,601 citations

Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: In this article, the authors report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a high-foot implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion.
Abstract: Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

733 citations