scispace - formally typeset
Search or ask a question
Author

Richard Bucala

Bio: Richard Bucala is an academic researcher from Yale University. The author has contributed to research in topics: Macrophage migration inhibitory factor & Cytokine. The author has an hindex of 119, co-authored 595 publications receiving 54607 citations. Previous affiliations of Richard Bucala include École Polytechnique Fédérale de Lausanne & Rockefeller University.


Papers
More filters
Journal ArticleDOI
21 Oct 1993-Nature
TL;DR: Macrophage migration inhibitory factor (MIF) is identified as a major secreted protein released by anterior pituitary cells in response to LPS stimulation, and it is concluded that MIF plays a central role in the toxic response to endotoxaemia and possibly septic shock.
Abstract: Cytokines are critical in the often fatal cascade of events that cause septic shock. One regulatory system that is likely to be important in controlling inflammatory responses is the neuroendocrine axis. The pituitary, for example, is ideally situated to integrate central and peripheral stimuli, and initiates the increase in systemic glucocorticoids that accompanies host stress responses. To assess further the contribution of the pituitary to systemic inflammatory processes, we examined the secretory profile of cultured pituitary cells and whole pituitaries in vivo after stimulation with bacterial lipopolysaccharide (LPS). Here we identify macrophage migration inhibitory factor (MIF) as a major secreted protein release by anterior pituitary cells in response to LPS stimulation. Serum analysis of control, hypophysectomized and T-cell-deficient (nude) mice suggests that pituitary-derived MIF contributes to circulating MIF present in the post-acute phase of endotoxaemia. Recombinant murine MIF greatly enhances lethality when co-injected with LPS and anti-MIF antibody confers full protection against lethal endotoxaemia. We conclude that MIF plays a central role in the toxic response to endotoxaemia and possibly septic shock.

990 citations

PatentDOI
TL;DR: In this paper, a method for producing fibrocytes comprising contacting a population of human peripheral blood mononuclear cells (PBMC) comprising predominantly CD14+ cells with autologous T cells or a form of TGFs, preferably TGF-s1, was described.
Abstract: Disclosed are the identification of a differentiation pathway of cultured fibrocytes, characterization of the signals for fibrocyte migration to wound site in vivo , and the potential role of fibrocytes in wound contracture. The invention relates to a method for producing fibrocytes comprising contacting a population of human peripheral blood mononuclear cells (PBMC comprising predominantly CD14+ cells with autologous T cells or a form of TGFs, preferably TGFs1, thereby inducing differentiation of fibrocytes from precursors in the PBMC population. These fibrocytes are useful for treating a wound in a mammalian subject by administering fibrocytes to the subject, preferably in combination with TGF1. Also disclosed are methods for attracting or targeting fibrocytes to a wound by administering SLC or another agonist of the CCR7 chemokine receptor, at or near the site of the wound, and methods of decreasing undesired wound fibrosis by inhibiting fibrocyte activity.

977 citations

Journal ArticleDOI
TL;DR: It is reported that cells of the monocyte/macrophage lineage are an important source of MIF in vitro and in vivo, and high levels of both preformed MIF protein and MIF mRNA in resting, nonstimulated cells are observed.
Abstract: For over 25 years, the cytokine known as macrophage migration inhibitory factor (MIF) has been considered to be a product of activated T lymphocytes. We recently identified the murine homolog of human MIF as a protein secreted by the pituitary in response to endotoxin administration. In the course of these studies, we also detected MIF in acute sera obtained from endotoxin-treated, T cell-deficient (nude), and hypophysectomized mice, suggesting that still more cell types produce MIF. Here, we report that cells of the monocyte/macrophage lineage are an important source of MIF in vitro and in vivo. We observed high levels of both preformed MIF protein and MIF mRNA in resting, nonstimulated cells. In the murine macrophage cell line RAW 264.7, MIF secretion was induced by as little as 10 pg/ml of lipopolysaccharide (LPS), peaked at 1 ng/ml, and was undetectable at LPS concentrations > 1 microgram/ml. A similar stimulation profile was observed in LPS-treated peritoneal macrophages; however, higher LPS concentrations were necessary to induce peak MIF production unless cells had been preincubated with interferon gamma (IFN-gamma). In RAW 264.7 macrophages, MIF secretion also was induced by tumor necrosis factor alpha (TNF-alpha) and IFN-gamma, but not by interleukins 1 beta or 6. Of note, MIF-stimulated macrophages were observed to secrete bioactive TNF-alpha. Although previously overlooked, the macrophage is both an important source and an important target of MIF in vivo. The activation of both central (pituitary) and peripheral (macrophage) sources of MIF production by inflammatory stimuli provides further evidence for the critical role of this cytokine in the systemic response to tissue invasion.

971 citations

Journal ArticleDOI
TL;DR: It is reported herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF, and it is identified as a natural ligand forCD74, which has been implicated previously in signaling and accessory functions for immune cell activation.
Abstract: Macrophage migration inhibitory factor (MIF) accounts for one of the first cytokine activities to have been described, and it has emerged recently to be an important regulator of innate and adaptive immunity. MIF is an upstream activator of monocytes/macrophages, and it is centrally involved in the pathogenesis of septic shock, arthritis, and other inflammatory conditions. The protein is encoded by a unique but highly conserved gene, and X-ray crystallography studies have shown MIF to define a new protein fold and structural superfamily. Although recent work has begun to illuminate the signal transduction pathways activated by MIF, the nature of its membrane receptor has not been known. Using expression cloning and functional analysis, we report herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF. MIF binds to the extracellular domain of CD74, and CD74 is required for MIF-induced activation of the extracellular signal–regulated kinase–1/2 MAP kinase cascade, cell proliferation, and PGE2 production. A recombinant, soluble form of CD74 binds MIF with a dissociation constant of ∼9 × 10−9 K d, as defined by surface plasmon resonance (BIAcore analysis), and soluble CD74 inhibits MIF-mediated extracellular signal–regulated kinase activation in defined cell systems. These data provide a molecular basis for MIF's interaction with target cells and identify it as a natural ligand for CD74, which has been implicated previously in signaling and accessory functions for immune cell activation.

970 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
02 Apr 1999-Science
TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Abstract: Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.

20,479 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations