scispace - formally typeset
Search or ask a question
Author

Richard Bucala

Bio: Richard Bucala is an academic researcher from Yale University. The author has contributed to research in topics: Macrophage migration inhibitory factor & Cytokine. The author has an hindex of 119, co-authored 595 publications receiving 54607 citations. Previous affiliations of Richard Bucala include École Polytechnique Fédérale de Lausanne & Rockefeller University.


Papers
More filters
Journal ArticleDOI
TL;DR: The subunit arrangement of human macrophage migration inhibitory factor is similar to that of tumor necrosis factor and suggests that signal transduction might require trimerization of receptor subunits, in contrast to previous reports indicating that MIF is a monomer or dimer.
Abstract: The subunit structure of human macrophage migration inhibitory factor (MIF) has been studied by preliminary X-ray analysis of wild-type and selenomethionine-MIF and dynamic light scattering. Crystal form I of MIF belongs to space group P2(1)2(1)2(1) and is grown from 2 M ammonium sulfate at pH 8.5. A native data set has been collected to 2.4 A resolution. Self-rotation studies and Van values indicate that three molecules per asymmetric unit are present. A data set to 2.8 A resolution has been collected for crystal form II, which belongs to space group P3(1)21 or P3(2)21 and grows from 2 M ammonium sulfate, 2% polyethylene glycol (average molecular mass 400) 0.1 M HEPES, pH 7.5. Three, four, five or six monomers in the asymmetric unit are consistent with Van values for this crystal form. Analysis of crystal form II containing selenomethionine-MIF indicates nine selenium sites are present per asymmetric unit. Dynamic light scattering of MIF suggests that the major form of the protein in solution is a trimer. The results of these studies are in contrast to previous reports indicating that MIF is a monomer or dimer. The subunit arrangement of MIF is similar to that of tumor necrosis factor and suggests that signal transduction might require trimerization of receptor subunits.

59 citations

Journal ArticleDOI
TL;DR: The data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.
Abstract: The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomyocytes and secreted by the heart after ischemic stress. Antibody-dependent neutralization of secreted DDT exacerbated both ischemia-induced cardiac contractile dysfunction and necrosis. We generated cardiomyocyte-specific DDT knockout mice (Myh6-Cre Ddtfl/fl), which demonstrated normal baseline cardiac size and function, but had an impaired physiologic response to ischemia-reperfusion. Hearts from Myh6-Cre Ddtfl/fl mice exhibited more necrosis and LV contractile dysfunction than control hearts after coronary artery ligation and reperfusion. Furthermore, treatment with DDT protected isolated hearts against injury and contractile dysfunction after ischemia-reperfusion. The protective effect of DDT required activation of the metabolic stress enzyme AMP-activated protein kinase (AMPK), which was mediated by a CD74/CaMKK2-dependent mechanism. Together, our data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.

58 citations

Journal ArticleDOI
TL;DR: Results provide evidence that profiles of certain gene activation in cells from patients with inflammatory synovitis differ from those with non‐inflammatory disease and suggest that the fibroblastoid cells are responsible for a considerable proportion of the altered phenotypic expression pattern in whole tissue.
Abstract: Fibroblastoid synovial lining cells isolated from rheumatoid and other chronic inflammatory synovial tissue exhibit distinctive and sustained alterations in serial culture not commonly found in similarly cultured cells from osteoarthritic synovium. These are demonstrable using a multi-gene dot blot assay by labelling reverse transcribed fibroblast cDNA which is hybridized to plasmids containing relevant target gene inserts. Cultured synovial fibroblastoid cells from patients with chronic inflammatory synovitis expressed significantly higher levels of stromelysin, vimentin and TIMP-1 mRNA and lower levels of c-myc compared to cells isolated from osteoarthritis synovium although with considerable variation. Early fetal synovial lining cells were similar to cells from osteoarthritis synovium but vimentin expression was higher. Marked differences in patterns of gene expression between cell lines persisted through 10 serial passages over 6-8 months. In whole synovia, the average level of mRNA for stromelysin, vimentin, IL-4, IL-6, TIMP-1, cathepsin D, gelatinase, TGF alpha, c-fms and DR beta were preferentially expressed in inflammatory tissue while c-myc expression was higher in osteoarthritis synovium. Inflammatory synovium also expressed TNF alpha, IL-1 alpha, IL-1 beta, IL-2, c-sis, tissue plasminogen activator, CSF-1, and GM-CSF. This pattern resembles, in part, that found in cultured inflammatory fibroblasts but, in addition, gene products apparently reflecting the presence of activated monocytes and lymphocytes were detected. These results provide evidence that profiles of certain gene activation in cells from patients with inflammatory synovitis differ from those with non-inflammatory disease and suggest that the fibroblastoid cells are responsible for a considerable proportion of the altered phenotypic expression pattern in whole tissue. Furthermore, this modulated pattern of gene activation appears to be an intrinsic pro-inflammatory characteristic of the fibroblastoid cells initiated in response to chronic inflammation and persists for a prolonged period in the absence of other inflammatory cells.

58 citations

Journal ArticleDOI
TL;DR: Electron microscopic analysis revealed fiber cell separation, vacuolization, and changes within the matrix of the crystallins that could only be produced by glucocorticoids possessing a reactive C-20,21 hydroxylcarbonyl function, supporting the hypothesis that glucocortex addition products are involved in the induction of these lesions.

58 citations

Journal ArticleDOI
TL;DR: PPS is a promising new therapy for alphvirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection, and demonstrates the potential of glycotherapeutics as a new class of treatment for infectious arthritis.
Abstract: Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) cause large-scale epidemics of severe musculoskeletal disease and have been progressively expanding their global distribution. Since its introduction in July 2014, CHIKV now circulates in the United States. The hallmark of alphavirus disease is crippling pain and inflammation of the joints, a similar immunopathology to rheumatoid arthritis. The use of glycans as novel therapeutics is an area of research that has increased in recent years. Here, we describe the promising therapeutic potential of the glycosaminoglycan (GAG)-like molecule pentosan polysulfate (PPS) to alleviate virus-induced arthritis. Mouse models of RRV and CHIKV disease were used to characterize the extent of cartilage damage in infection and investigate the potential of PPS to treat disease. This was assessed using histological analysis, real-time PCR, and fluorescence-activated cell sorting (FACS). Alphaviral infection resulted in cartilage destruction, the severity of which was alleviated by PPS therapy during RRV and CHIKV clinical disease. The reduction in cartilage damage corresponded with a significant reduction in immune infiltrates. Using multiplex bead arrays, PPS treatment was found to have significantly increased the anti-inflammatory cytokine interleukin-10 and reduced proinflammatory cytokines, typically correlated with disease severity. Furthermore, we reveal that the severe RRV-induced joint pathology, including thinning of articular cartilage and loss of proteoglycans in the cartilage matrix, was diminished with treatment. PPS is a promising new therapy for alphavirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection. Overall, the data demonstrate the potential of glycotherapeutics as a new class of treatment for infectious arthritis. IMPORTANCE The hallmark of alphavirus disease is crippling pain and joint arthritis, which often has an extended duration. In the past year, CHIKV has expanded into the Americas, with approximately 1 million cases reported to date, whereas RRV continues to circulate in the South Pacific. Currently, there is no licensed specific treatment for alphavirus disease, and the increasing spread of infection highlights an urgent need for therapeutic intervention strategies. Pentosan polysulfate (PPS) is a glycan derivative that is orally bioavailable, has few toxic side effects, and is currently licensed under the name Elmiron for the treatment of cystitis in the United States. Our findings show that RRV infection damages the articular cartilage, including a loss of proteoglycans within the joint. Furthermore, treatment with PPS reduced the severity of both RRV- and CHIKV-induced musculoskeletal disease, including a reduction in inflammation and joint swelling, suggesting that PPS is a promising candidate for drug repurposing for the treatment of alphavirus-induced arthritis.

58 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
02 Apr 1999-Science
TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Abstract: Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.

20,479 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations