scispace - formally typeset
Search or ask a question
Author

Richard C. Boucher

Bio: Richard C. Boucher is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Cystic fibrosis & Cystic fibrosis transmembrane conductance regulator. The author has an hindex of 129, co-authored 490 publications receiving 54509 citations. Previous affiliations of Richard C. Boucher include American Heart Association & Durham University.


Papers
More filters
Journal ArticleDOI
TL;DR: In CF patients with established lung disease, Pseudomonas aeruginosa was located within hypoxic mucopurulent masses in airway lumens, and in vitro studies revealed that CF-specific increases in epithelial O(2) consumption, linked to increased airway surface liquid (ASL) volume absorption and mucus stasis, generated steep hypoxic gradients within thickened mucus on CF epithelial surfaces prior to infection.
Abstract: Current theories of CF pathogenesis predict different predisposing “local environmental” conditions and sites of bacterial infection within CF airways. Here we show that, in CF patients with established lung disease, Psuedomonas aeruginosa was located within hypoxic mucopurulent masses in airway lumens. In vitro studies revealed that CF-specific increases in epithelial O2 consumption, linked to increased airway surface liquid (ASL) volume absorption and mucus stasis, generated steep hypoxic gradients within thickened mucus on CF epithelial surfaces prior to infection. Motile P. aeruginosa deposited on CF airway surfaces penetrated into hypoxic mucus zones and responded to this environment with increased alginate production. With P. aeruginosa growth in oxygen restricted environments, local hypoxia was exacerbated and frank anaerobiosis, as detected in vivo, resulted. These studies indicate that novel therapies for CF include removal of hypoxic mucus plaques and antibiotics effective against P. aeruginosa adapted to anaerobic environments.

1,182 citations

Journal ArticleDOI
23 Jul 2020-Cell
TL;DR: The nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS/COVID-19 pathogenesis is highlighted and reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.

1,163 citations

Journal ArticleDOI
TL;DR: The role of mucus clearance in the lung is focused on as the more important innate defense mechanism in health and disease, including CF.
Abstract: The conducting airways branch 20–25 times between the trachea and the alveoli as inhaled air passes from the relatively constricted nasal/tracheal passages to the large surface area of alveoli (70 m2), where gas exchange occurs. This branching anatomy leads to a surface area that expands greatly from proximal airways (e.g., third generation; ∼50 cm2) to distal airways (20th to 25th generation; ∼2 m2). The regional differences in airway surface area (or airway perimeters; ref. 1), which is often depicted by showing the airways as an inverted funnel (Figure ​(Figure1),1), pose interesting challenges for lung defense. Because many of the particles that settle on airway surfaces are infectious, airways have evolved innate defense mechanisms that constantly protect airways against bacterial and other types of infection. Figure 1 Pulmonary defense mechanisms preventing chronic bacterial infection. The lung is depicted as an inverted funnel, reflecting the relative surface area of distal versus proximal airways. The mechanical-clearance-of-mucus hypothesis is shown on the left. ... There is still little agreement on the nature of these innate airway defense mechanisms (2, 3) (Figure ​(Figure1).1). In the more traditional view, mechanical clearance of mucus is considered the primary innate airway defense mechanism (4–6). In this view, the role of the epithelia lining airway surfaces is to provide the integrated activities required for mucus transport, including ciliary activity and regulation of the proper quantity of salt and water on airway surfaces via transepithelial ion transport. More recently, a second view of innate airway defense has emerged as a result of studies of the pathogenesis of cystic fibrosis (CF) (7). This view emphasizes a role for a “chemical shield” in protecting the lung against inhaled bacteria (8). In this hypothesis, the two important functions for epithelia are the production of salt-sensitive defensins that are secreted into airway lumens, and the production of a low-salt (<50 mM NaCl) liquid on airway surfaces that renders defensins active (9). The predictions of each of these models and the relevant data have been extensively reviewed (2, 3, 10, 11). Here, we will focus on the role of mucus clearance in the lung as the more important innate defense mechanism in health and disease, including CF. We will attempt to fill in the gaps in our knowledge regarding important aspects of the mucus clearance system, and, where relevant, point out differences between the two views of innate airway defense.

1,157 citations

Journal ArticleDOI
11 Aug 1995-Science
TL;DR: In CF airway epithelia, the absence of this second function of CFTR as a cAMP-dependent regulator likely accounts for abnormal sodium transport.
Abstract: Cystic fibrosis transmembrane regulator (CFTR), the gene product that is mutated in cystic fibrosis (CF) patients, has a well-recognized function as a cyclic adenosine 3',5'-monophosphate (cAMP)-regulated chloride channel, but this property does not account for the abnormally high basal rate and cAMP sensitivity of sodium ion absorption in CF airway epithelia. Expression of complementary DNAs for rat epithelial Na+ channel (rENaC) alone in Madin Darby canine kidney (MDCK) epithelial cells generated large amiloride-sensitive sodium currents that were stimulated by cAMP, whereas coexpression of human CFTR with rENaC generated smaller basal sodium currents that were inhibited by cAMP. Parallel studies that measured regulation of sodium permeability in fibroblasts showed similar results. In CF airway epithelia, the absence of this second function of CFTR as a cAMP-dependent regulator likely accounts for abnormal sodium transport.

1,077 citations

Journal ArticleDOI
23 Dec 1998-Cell
TL;DR: In this paper, two hypotheses, "hypotonic [low salt]/defensin" and "isotonic volume transport/mucus clearance", attempt to link defects in cystic fibrosis transmembrane conductance regulator-mediated ion transport to CF airways disease.

1,052 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
08 Sep 1989-Science
TL;DR: A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients.
Abstract: Overlapping complementary DNA clones were isolated from epithelial cell libraries with a genomic DNA segment containing a portion of the putative cystic fibrosis (CF) locus, which is on chromosome 7 Transcripts, approximately 6500 nucleotides in size, were detectable in the tissues affected in patients with CF The predicted protein consists of two similar motifs, each with (i) a domain having properties consistent with membrane association and (ii) a domain believed to be involved in ATP (adenosine triphosphate) binding A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients

6,731 citations

Journal ArticleDOI
TL;DR: It is evident that biofilm formation is an ancient and integral component of the prokaryotic life cycle, and is a key factor for survival in diverse environments.
Abstract: Biofilms--matrix-enclosed microbial accretions that adhere to biological or non-biological surfaces--represent a significant and incompletely understood mode of growth for bacteria. Biofilm formation appears early in the fossil record (approximately 3.25 billion years ago) and is common throughout a diverse range of organisms in both the Archaea and Bacteria lineages, including the 'living fossils' in the most deeply dividing branches of the phylogenetic tree. It is evident that biofilm formation is an ancient and integral component of the prokaryotic life cycle, and is a key factor for survival in diverse environments. Recent advances show that biofilms are structurally complex, dynamic systems with attributes of both primordial multicellular organisms and multifaceted ecosystems. Biofilm formation represents a protected mode of growth that allows cells to survive in hostile environments and also disperse to colonize new niches. The implications of these survival and propagative mechanisms in the context of both the natural environment and infectious diseases are discussed in this review.

6,170 citations

Journal ArticleDOI
12 Apr 1996-Science
TL;DR: The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.
Abstract: A retroviral vector system based on the human immunodeficiency virus (HIV) was developed that, in contrast to a murine leukemia virus-based counterpart, transduced heterologous sequences into HeLa cells and rat fibroblasts blocked in the cell cycle, as well as into human primary macrophages. Additionally, the HIV vector could mediate stable in vivo gene transfer into terminally differentiated neurons. The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.

5,076 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations