scispace - formally typeset
Search or ask a question
Author

Richard C. Chu

Bio: Richard C. Chu is an academic researcher from IBM. The author has contributed to research in topics: Coolant & Heat exchanger. The author has an hindex of 61, co-authored 299 publications receiving 11676 citations.


Papers
More filters
Patent
Richard C. Chu1, Michael J. Ellsworth1, Edward Furey1, Roger R. Schmidt1, Robert E. Simons1 
25 Nov 2002
TL;DR: In this article, the authors describe an enclosure for combined air and liquid cooling of a rack mounted stacked electronic components, where a heat exchanger is mounted on the side of the stacked electronics and air flows side to side within the enclosure, impelled by air moving devices mounted behind the electronics.
Abstract: An enclosure apparatus provides for combined air and liquid cooling of rack mounted stacked electronic components. A heat exchanger is mounted on the side of the stacked electronics and air flows side to side within the enclosure, impelled by air-moving devices mounted behind the electronics. Auxiliary air-moving devices may be mounted within the enclosure to increase the air flow. In an alternative embodiment, air-to-liquid heat exchangers are provided across the front and back of the enclosure, and a closed air flow loop is created by a converging supply plenum, electronics drawers through which air is directed by air-moving devices, diverging return plenum, and a connecting duct in the bottom. In a variant of this embodiment, connecting ducts are in both top and bottom, and supply and return ducts are doubly convergent and doubly divergent, respectively. Auxiliary blowers may be added to increase total system air flow. The enclosure also may be provided with automatically opening vent panels to allow room air to circulate and cool in the event of an over-temperature condition. The design of the enclosure permits it to be constructed apart from the rack-mounted apparatus and subsequently attached to the rack, if desired, at the facility at which the rack had been previously operating.

248 citations

Journal ArticleDOI
Richard C. Chu1, Robert E. Simons1, Michael J. Ellsworth1, Roger R. Schmidt1, V. Cozzolino1 
TL;DR: This paper provides a broad review of the cooling technologies for computer products from desktop computers to large servers in terms of air, hybrid, liquid, and refrigeration-cooled systems.
Abstract: This paper provides a broad review of the cooling technologies for computer products from desktop computers to large servers. For many years cooling technology has played a key role in enabling and facilitating the packaging and performance improvements in each new generation of computers. The role of internal and external thermal resistance in module level cooling is discussed in terms of heat removal from chips and module and examples are cited. The use of air-cooled heat sinks and liquid-cooled cold plates to improve module cooling is addressed. Immersion cooling as a scheme to accommodate high heat flux at the chip level is also discussed. Cooling at the system level is discussed in terms of air, hybrid, liquid, and refrigeration-cooled systems. The growing problem of data center thermal management is also considered. The paper concludes with a discussion of future challenges related to computer cooling technology.

232 citations

Patent
02 Jul 2003
TL;DR: In this paper, a cooling fluid is supplied to the inlet heat exchanger, to cool incoming air below ambient temperature, and the exhaust heat exchangers further transfers heat dissipated by electronic devices to the cooling fluid.
Abstract: Augmenting air cooling of electronics systems using a cooling fluid to cool air entering the electronics system, and to remove a portion of the heat dissipated by the electronics. A cooled electronics system includes a frame, electronics drawers, fans or air moving devices, and an inlet heat exchanger. A cooling fluid such as chilled water is supplied to the inlet heat exchanger, to cool incoming air below ambient temperature. Fans cause ambient air to enter the system, flow through the inlet heat exchanger, through electronic devices, and exit the system. An optional exhaust heat exchanger further transfers heat dissipated by electronic devices to the cooling fluid. Heat exchangers are pivotally mounted, providing drawer access. Segmented heat exchangers provide access to individual drawers. Heat exchangers are integrated into cover assemblies. Airflow guides such as louvers are provided at inlets and outlets. Cover assemblies provide a degree of acoustic and electromagnetic shielding.

221 citations

Patent
18 Apr 2005
TL;DR: In this article, a heat exchange assembly mounted to an outlet door cover hingedly affixed to an air outlet side of an electronics rack is presented for facilitating cooling of an EH rack.
Abstract: An apparatus is provided for facilitating cooling of an electronics rack. The apparatus includes a heat exchange assembly mounted to an outlet door cover hingedly affixed to an air outlet side of the rack. The heat exchange assembly includes a support frame, an air-to-liquid heat exchanger, and first and second perforated planar surfaces covering first and second main sides, respectively, of the air-to-liquid heat exchanger. The heat exchanger is supported by the support frame and includes inlet and outlet plenums disposed adjacent to the edge of the outlet door cover hingedly mounted to the rack. Each plenum is in fluid communication with a respective connect coupling, and the heat exchanger further includes multiple horizontally-oriented heat exchange tube sections each having serpentine cooling channel with an inlet and an outlet coupled to the inlet plenum and outlet plenum, respectively. Fins extend from the heat exchange tube sections.

193 citations

Patent
28 Oct 1975
TL;DR: In this paper, a gas encapsulated cooling unit is provided for one or more heat generating components mounted on a substrate, where a heat conductive cap is sealed to the substrate enclosing the heat generating component.
Abstract: A gas encapsulated cooling unit is provided for one or more heat generating components mounted on a substrate. A heat conductive cap is sealed to the substrate enclosing the heat generating components. The wall of the cap opposite the substrate contains elongated openings therein extending towards the heat generating components and on the same centers with respect thereto. A resilient member is located in the cap in communion with the inner end of the openings. A thermal conductive element is located in each of the openings forming a small peripheral gap between each opening wall and the associated thermal conductive element. The resilient member urges the thermal conductive elements into pressure contact with the heat generating components. A thermal conductive inert gas is located within the cap filling the peripheral gaps and the interfaces between the heat generating elements and the thermal conductive elements. The heat is removed from the cap by external heat removal means.

150 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Patent
Ichiro Endo1, Yasushi Sato1, Seiji Saito1, Takashi Nakagiri1, Shigeru Ohno1 
06 Feb 1986
TL;DR: In this paper, liquid droplets are formed by instantaneous state change by thermal energy of a liquid filled in a thermal chamber, said droplets being deposited onto a recording member to achieve recording.
Abstract: Liquid droplets are formed by instantaneous state change by thermal energy of a liquid filled in a thermal chamber, said droplets being deposited onto a recording member to achieve recording.

1,835 citations

Journal ArticleDOI
TL;DR: The process steps and design aspects that were developed at IBM to enable the formation of stacked device layers are reviewed, including the descriptions of a glass substrate process to enable through-wafer alignment and a single-damascene patterning and metallization method for the creation of high-aspect-ratio capability.
Abstract: Three-dimensional (3D) integrated circuits (ICs), which contain multiple layers of active devices, have the potential to dramatically enhance chip performance, functionality, and device packing density. They also provide for microchip architecture and may facilitate the integration of heterogeneous materials, devices, and signals. However, before these advantages can be realized, key technology challenges of 3D ICs must be addressed. More specifically, the processes required to build circuits with multiple layers of active devices must be compatible with current state-of-the-art silicon processing technology. These processes must also show manufacturability, i.e., reliability, good yield, maturity, and reasonable cost. To meet these requirements, IBM has introduced a scheme for building 3D ICs based on the layer transfer of functional circuits, and many process and design innovations have been implemented. This paper reviews the process steps and design aspects that were developed at IBM to enable the formation of stacked device layers. Details regarding an optimized layer transfer process are presented, including the descriptions of 1) a glass substrate process to enable through-wafer alignment; 2) oxide fusion bonding and wafer bow compensation methods for improved alignment tolerance during bonding; 3) and a single-damascene patterning and metallization method for the creation of high-aspect-ratio (6:1 108 vias/cm2), and extremely aggressive wafer-to-wafer alignment (submicron) capability.

740 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the latest status of PEM fuel cell technology development and applications in the portable and transportation power through an overview of the state of the art and most recent technological advances, and describe materials and water/thermal transport management for fuel cell design and operational control.

627 citations

Journal ArticleDOI
TL;DR: This paper discusses device and material options to improve device performance when conventional scaling is power-constrained, separated into three categories: improved short-channel behavior, improved current drive, and improved switching behavior.
Abstract: To a large extent, scaling was not seriously challenged in the past. However, a closer look reveals that early signs of scaling limits were seen in high-performance devices in recent technology nodes. To obtain the projected performance gain of 30% per generation, device designers have been forced to relax the device subthreshold leakage continuously from one to several nA/µm for the 250-nm node to hundreds of nA/µm for the 65-nm node. Consequently, passive power density is now a significant portion of the power budget of a high-speed microprocessor. In this paper we discuss device and material options to improve device performance when conventional scaling is power-constrained. These options can be separated into three categories: improved short-channel behavior, improved current drive, and improved switching behavior. In the first category fall advanced dielectrics and multi-gate devices. The second category comprises mobility-enhancing measures through stress and substrate material alternatives. The third category focuses mainly on scaling of SOI body thickness to reduce capacitance. We do not provide details of the fabrication of these different device options or the manufacturing challenges that must be met. Rather, we discuss the fundamental scaling issues related to the various device options. We conclude with a brief discussion of the ultimate FET close to the fundamental silicon device limit.

433 citations