scispace - formally typeset
Search or ask a question
Author

Richard C. Dubes

Bio: Richard C. Dubes is an academic researcher from Michigan State University. The author has contributed to research in topics: Cluster analysis & Single-linkage clustering. The author has an hindex of 23, co-authored 39 publications receiving 21421 citations.

Papers
More filters
01 Jan 1988

9,439 citations

Book
01 Jan 1988

8,586 citations

Journal ArticleDOI
TL;DR: This review paper explains how Gibbs and Markov random field models provide a unifying theme for many contemporary problems in image analysis and allows the introduction of spatial context into pixel labeling problems, such as segmentation and restoration.
Abstract: Image models are useful in quantitatively specifying natural constraints and general assumptions about the physical world and the imaging process. This review paper explains how Gibbs and Markov random field models provide a unifying theme for many contemporary problems in image analysis. Random field models permit the introduction of spatial context into pixel labeling problems, such as segmentation and restoration. Random field models also describe textured images and lead to algorithms for generating textured images, classifying textures and segmenting textured images. In spite of some impressive model-based image restoration and texture segmentation results reported in the literature, a number of fundamental issues remain unexplored, such as the specification of MRF models, modeling noise processes, performance evaluation, parameter estimation, the phase transition phenomenon and the comparative analysis of alternative procedures. The literature of random field models is filled with great promise, but...

479 citations

Journal ArticleDOI
TL;DR: Comparisons of textural features for pattern recognition show that co-occurrence features perform best followed by the fractal features, however, there is no universally best subset of features.

451 citations

Journal ArticleDOI
TL;DR: This paper examines eight clustering programs which are representative of the various available techniques and compare their performances from several points of view to set some guidelines for a potential user of a clustering technique.

336 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Proceedings Article
02 Aug 1996
TL;DR: In this paper, a density-based notion of clusters is proposed to discover clusters of arbitrary shape, which can be used for class identification in large spatial databases and is shown to be more efficient than the well-known algorithm CLAR-ANS.
Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLAR-ANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

17,056 citations

Proceedings Article
01 Jan 1996
TL;DR: DBSCAN, a new clustering algorithm relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape, is presented which requires only one input parameter and supports the user in determining an appropriate value for it.
Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLARANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

14,297 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Journal ArticleDOI
TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Abstract: We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the image data, our approach aims at extracting the global impression of an image. We treat image segmentation as a graph partitioning problem and propose a novel global criterion, the normalized cut, for segmenting the graph. The normalized cut criterion measures both the total dissimilarity between the different groups as well as the total similarity within the groups. We show that an efficient computational technique based on a generalized eigenvalue problem can be used to optimize this criterion. We applied this approach to segmenting static images, as well as motion sequences, and found the results to be very encouraging.

13,789 citations