scispace - formally typeset
Search or ask a question
Author

Richard C. Dugdale

Bio: Richard C. Dugdale is an academic researcher from San Francisco State University. The author has contributed to research in topics: Upwelling & Phytoplankton. The author has an hindex of 51, co-authored 117 publications receiving 11117 citations. Previous affiliations of Richard C. Dugdale include University of Washington & University of Pittsburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of zooplankton in regenerating nitrogen as ammonia in the Sargasso Sea is examined theoretically in this article, showing that only about 10% of the daily ammonia uptake by phytoplanton living in the upper 100 m.
Abstract: The use of 15N-labeled compounds to obtain specific uptake rates for the various nitrogen sources available to the phytoplankton makes it possible to separate the fractions of primary productivity corresponding to new and regenerated nitrogen in the euphotic zone of the ocean. Measurements of nitrate uptake as a fraction of ammonia plus nitrate uptake have been obtained from the northwest Atlantic and the northeast Pacific oceans. Mean values range from 8.3 to 39.5%, the former being characteristic of subtropical regions and the latter of northern temperate regions or coastal and inland waters. Nitrogen fixation is also a source of new nitrogen. Rates of nitrogen fixation are found to be as high or higher than nitrate uptake, in some cases suggesting an important role for nitrogen-fixing phytoplankton. The role of zooplankton in regenerating nitrogen as ammonia in the Sargasso Sea is examined theoretically. Probably only about 10% of the daily ammonia uptake by phytoplankton is contributed by the zooplankton living in the upper 100 m.

2,655 citations

Journal ArticleDOI
15 Jan 1998-Nature
TL;DR: In this paper, the authors used field data and a simple silicon-cycle model to investigate the high-nitrate, low-chlorophyll (HNLC) condition for the upwelling zone of this ocean region.
Abstract: Surface waters of the eastern equatorial Pacific Ocean present the enigma of apparently high plant-nutrient concentrations but low phytoplankton biomass and productivity1. One explanation for this ‘high-nitrate, low-chlorophyll’ (HNLC) phenomenon has been that growth is limited by iron availability2,3. Here we use field data and a simple silicon-cycle model4 to investigate the HNLC condition for the upwelling zone of this ocean region. Measured silicate concentrations in surface waters are low and largely invariant with time, and set the upper limit on the total possible biological utilization of dissolved inorganic carbon. Chemical and biological data from surface waters indicate that diatoms—silica-shelled phytoplankton—carry out all the ‘new production’ (nitrate uptake)5. Smaller phytoplankton (picoplankton) accomplish most of the total primary production, largely fuelled by nitrogen regenerated in reduced forms as a result of grazing by zooplankton. The model predicts values of new and export production (the production exported to below the euphotic zone) that compare well with measured values6. New and export production are in balance for biogenic silica, whereas new production exceeds export for nitrogen. The HNLC condition in the upwelling zone can therefore be understood to be due to a chemostat-like regulation of nitrate uptake by upwelled silicate supply to diatoms: ‘low-silicate HNLC’. These results are not inconsistent with observations of iron-fertilized diatom growth during in situ experiments in ‘low-iron HNLC’ waters outside this upwelling zone2,3, but reflect the role of different supply rates of iron and silicate in determining the nature of the HNLC condition.

487 citations

Journal ArticleDOI
TL;DR: The use of 15N to measure the flux of nitrogen compounds has become increasingly popular as the techniques and instrumentation for stable isotope analysis have become more widely available as discussed by the authors, especially for the research conducted in oligotrophic regions.
Abstract: The use of 15N to measure the flux of nitrogen compounds has become increasingly popular as the techniques and instrumentation for stable isotope analysis have become more widely available. Questions concerning equations for calculating uptake, effect of isotope dilution (in the case of ammonium), duration of incubation, and relationship between disappearance of a nitrogen com- pound and the 15N uptake measurement have arisen, especially for the research conducted in oligotrophic regions. Fewer problems seem to have occurred in eutrophic areas. However, sufficient literature now exists to allow some generally accepted experimental procedures for 15N studies in eutrophic regions to be laid down. Incubation periods of 2-6 h appear to avoid problems related to isotope dilution and to overcome the bias introduced in some cases by initial high rate or surge uptake. During such incubation periods, assimilation is measured rather than uptake or transport into the cell. Incorporation of 15N into the particulate fraction is usually linear with time over the periods currently used. The 15N method provides a better estimate of incorporation into phytoplankton than 14N disappearance, but a small fraction appears to be lost. Although most workers suggest the loss to be a result of dissolved organic nitrogen production, direct evidence is lacking. If the considerations discussed here are applied with the lSN techniques currently available, reliable estimates of phytoplankton nitrogen flux in eutrophic areas can be obtained.

430 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Abstract: This paper contrasts the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr). A variety of data sets are used to construct global N budgets for 1860 and the early 1990s and to make projections for the global N budget in 2050. Regional N budgets for Asia, North America, and other major regions for the early 1990s, as well as the marine N budget, are presented to highlight the dominant fluxes of nitrogen in each region. Important findings are that human activities increasingly dominate the N budget at the global and at most regional scales, the terrestrial and open ocean N budgets are essentially dis- connected, and the fixed forms of N are accumulating in most environmental reservoirs. The largest uncertainties in our understanding of the N budget at most scales are the rates of natural biological nitrogen fixation, the amount of Nr storage in most environmental reservoirs, and the production rates of N2 by denitrification.

4,555 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examine both how the biogeochemistry of the nitrogen cycle could cause limitation to develop, and how nitrogen limitation could persist as a consequence of processes that prevent or reduce nitrogen fixation.
Abstract: The widespread occurrence of nitrogen limitation to net primary production in terrestrial and marine ecosystems is something of a puzzle; it would seem that nitrogen fixers should have a substantial competitive advantage wherever nitrogen is limiting, and that their activity in turn should reverse limitation. Nevertheless, there is substantial evidence that nitrogen limits net primary production much of the time in most terrestrial biomes and many marine ecosystems. We examine both how the biogeochemistry of the nitrogen cycle could cause limitation to develop, and how nitrogen limitation could persist as a consequence of processes that prevent or reduce nitrogen fixation. Biogeochemical mechansism that favor nitrogen limitation include: A number of mechanisms could keep nitrogen fixation from reversing nitrogen limitation. These include: The possible importance of these and other processes is discussed for a wide range of terrestrial, freshwater, and marine ecosystems.

3,332 citations

Journal ArticleDOI
TL;DR: The role of zooplankton in regenerating nitrogen as ammonia in the Sargasso Sea is examined theoretically in this article, showing that only about 10% of the daily ammonia uptake by phytoplanton living in the upper 100 m.
Abstract: The use of 15N-labeled compounds to obtain specific uptake rates for the various nitrogen sources available to the phytoplankton makes it possible to separate the fractions of primary productivity corresponding to new and regenerated nitrogen in the euphotic zone of the ocean. Measurements of nitrate uptake as a fraction of ammonia plus nitrate uptake have been obtained from the northwest Atlantic and the northeast Pacific oceans. Mean values range from 8.3 to 39.5%, the former being characteristic of subtropical regions and the latter of northern temperate regions or coastal and inland waters. Nitrogen fixation is also a source of new nitrogen. Rates of nitrogen fixation are found to be as high or higher than nitrate uptake, in some cases suggesting an important role for nitrogen-fixing phytoplankton. The role of zooplankton in regenerating nitrogen as ammonia in the Sargasso Sea is examined theoretically. Probably only about 10% of the daily ammonia uptake by phytoplankton is contributed by the zooplankton living in the upper 100 m.

2,655 citations

Journal ArticleDOI
TL;DR: The relationship between harmful algal blooms and eutrophication of coastal waters from human activities has been investigated in this paper, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae.
Abstract: Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients poten- tially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phos- phorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton pro- duction in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries re- sources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophyll a) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N:P or N:Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC:DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased un- derstanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/ abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over- enrichment on harmful algal species is clearly species specific.

2,500 citations

Journal ArticleDOI
01 Dec 1979-Nature
TL;DR: The primary production in the oceans results from allochthonous nutrient inputs to the euphotic zone (new production) and from nutrient recycling in the surface waters (regenerated production) as discussed by the authors.
Abstract: Primary production in the oceans results from allochthonous nutrient inputs to the euphotic zone (new production) and from nutrient recycling in the surface waters (regenerated production). Global new production is of the order of 3.4−4.7 × 109 tons of carbon per year and approximates the sinking flux of paniculate organic matter to the deep ocean.

2,439 citations