scispace - formally typeset
Search or ask a question
Author

Richard C. T. Howe

Bio: Richard C. T. Howe is an academic researcher from University of Cambridge. The author has contributed to research in topics: Fiber laser & Saturable absorption. The author has an hindex of 21, co-authored 38 publications receiving 2438 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this review, the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them are summarized and perspectives on their research and technological future prospects are presented.
Abstract: Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

371 citations

Journal ArticleDOI
TL;DR: A mechanism, based on edge states within the bandgap, is proposed, responsible for the wideband nonlinear optical absorption exhibited by the few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap.
Abstract: We fabricate a few-layer molybdenum disulfide (MoS₂) polymer composite saturable absorber by liquid-phase exfoliation, and use this to passively Q-switch an ytterbium-doped fiber laser, tunable from 1030 to 1070 nm. Self-starting Q-switching generates 2.88 μs pulses at 74 kHz repetition rate, with over 100 nJ pulse energy. We propose a mechanism, based on edge states within the bandgap, responsible for the wideband nonlinear optical absorption exhibited by our few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap.

314 citations

Journal ArticleDOI
TL;DR: A stable black phosphorus ink suitable for printed ultrafast lasers and photodetectors is demonstrated, enabling scalable development of optoelectronic and photonic devices.
Abstract: Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency ( 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices. Atomically thin black phosphorus shows promise for optoelectronics and photonics, yet its instability under environmental conditions and the lack of well-established large-area synthesis protocols hinder its applications. Here, the authors demonstrate a stable black phosphorus ink suitable for printed ultrafast lasers and photodetectors.

287 citations

Journal ArticleDOI
TL;DR: In this paper, a few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals is used to demonstrate a wideband tunable, ultrafast mode-locked fiber laser.
Abstract: We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

253 citations

Journal ArticleDOI
TL;DR: In this paper, a free-standing molybdenum diselenide (MoSe2) saturable absorber was fabricated by embedding liquid-phase exfoliated few-layer MoSe2 flakes into a polymer film, which is used to Q-switch fiber lasers based on ytterbium (Yb), erbium(Er) and thulium (Tm) gain fiber, producing trains of microsecond-duration pulses with kilohertz repetition rates at 1060 nm, 1566 nm and 1924 nm, respectively.
Abstract: We fabricate a free-standing molybdenum diselenide (MoSe2) saturable absorber by embedding liquid-phase exfoliated few-layer MoSe2 flakes into a polymer film. The MoSe2-polymer composite is used to Q-switch fiber lasers based on ytterbium (Yb), erbium (Er) and thulium (Tm) gain fiber, producing trains of microsecond-duration pulses with kilohertz repetition rates at 1060 nm, 1566 nm and 1924 nm, respectively. Such operating wavelengths correspond to sub-bandgap saturable absorption in MoSe2, which is explained in the context of edge-states, building upon studies of other semiconducting transition metal dichalcogenide (TMD)-based saturable absorbers. Our work adds few-layer MoSe2 to the growing catalog of TMDs with remarkable optical properties, which offer new opportunities for photonic devices.

238 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators.
Abstract: In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping ...

1,395 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, is reviewed.
Abstract: Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

1,158 citations

Journal ArticleDOI
TL;DR: A variety of strategies such as structural tuning, composition control, doping, hybrid structures, heterostructures, defect control, temperature effects and porosity effects on metal sulfide nanocrystals are discussed and how they are exploited to enhance performance and develop future energy materials.
Abstract: In recent years, nanocrystals of metal sulfide materials have attracted scientific research interest for renewable energy applications due to the abundant choice of materials with easily tunable electronic, optical, physical and chemical properties. Metal sulfides are semiconducting compounds where sulfur is an anion associated with a metal cation; and the metal ions may be in mono-, bi- or multi-form. The diverse range of available metal sulfide materials offers a unique platform to construct a large number of potential materials that demonstrate exotic chemical, physical and electronic phenomena and novel functional properties and applications. To fully exploit the potential of these fascinating materials, scalable methods for the preparation of low-cost metal sulfides, heterostructures, and hybrids of high quality must be developed. This comprehensive review indicates approaches for the controlled fabrication of metal sulfides and subsequently delivers an overview of recent progress in tuning the chemical, physical, optical and nano- and micro-structural properties of metal sulfide nanocrystals using a range of material fabrication methods. For hydrogen energy production, three major approaches are discussed in detail: electrocatalytic hydrogen generation, powder photocatalytic hydrogen generation and photoelectrochemical water splitting. A variety of strategies such as structural tuning, composition control, doping, hybrid structures, heterostructures, defect control, temperature effects and porosity effects on metal sulfide nanocrystals are discussed and how they are exploited to enhance performance and develop future energy materials. From this literature survey, energy conversion currently relies on a limited range of metal sulfides and their composites, and several metal sulfides are immature in terms of their dissolution, photocorrosion and long-term durability in electrolytes during water splitting. Future research directions for innovative metal sulfides should be closely allied to energy and environmental issues, along with their advanced characterization, and developing new classes of metal sulfide materials with well-defined fabrication methods.

685 citations

Journal Article
TL;DR: Strain is the response to the stress of liquids, solids and substances in between the former two that if a stress is applied to them, they will strain.
Abstract: Common to liquids, solids and substances in between the former two is that if a stress is applied to them, they will strain. Stress may be visualized by placing a small amount of fluid between two parallel plates. When one plate slides over the other, forces act on the fluid dependent upon the rate of the plate movement. This causes a shear stress on the liquid. Recall laminar flow of fluids through a tubular vessel. Strain is the response to the stress. If solids are elastic, they deform and return to their original shape. Since fluids are not elastic and, hence, viscous, their deformation is irreversible.

640 citations

Journal ArticleDOI
TL;DR: Highly concentrated, additive-free, aqueous and organic MXene-based inks that can be used for high-resolution extrusion and inkjet printing are reported.
Abstract: Direct printing of functional inks is critical for applications in diverse areas including electrochemical energy storage, smart electronics and healthcare. However, the available printable ink formulations are far from ideal. Either surfactants/additives are typically involved or the ink concentration is low, which add complexity to the manufacturing and compromises the printing resolution. Here, we demonstrate two types of two-dimensional titanium carbide (Ti3C2Tx) MXene inks, aqueous and organic in the absence of any additive or binary-solvent systems, for extrusion printing and inkjet printing, respectively. We show examples of all-MXene-printed structures, such as micro-supercapacitors, conductive tracks and ohmic resistors on untreated plastic and paper substrates, with high printing resolution and spatial uniformity. The volumetric capacitance and energy density of the all-MXene-printed micro-supercapacitors are orders of magnitude greater than existing inkjet/extrusion-printed active materials. The versatile direct-ink-printing technique highlights the promise of additive-free MXene inks for scalable fabrication of easy-to-integrate components of printable electronics.

611 citations