scispace - formally typeset
Search or ask a question
Author

Richard D. Bardgett

Other affiliations: Lancaster University, English Nature, Aberystwyth University  ...read more
Bio: Richard D. Bardgett is an academic researcher from University of Manchester. The author has contributed to research in topics: Ecosystem & Soil biology. The author has an hindex of 115, co-authored 381 publications receiving 51685 citations. Previous affiliations of Richard D. Bardgett include Lancaster University & English Nature.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the abundance and species richness, and factors that cause these parameters to vary, of mesofauna and macrofauna in an upland grassland soil studied intensively under the NERC Soil Biodiversity Programme.

130 citations

Journal ArticleDOI
TL;DR: Investigation of the relative contributions of soil abiotic properties and plant traits to variations in microbial processes involved in grassland nitrogen turnover suggests that consideration of plant traits, and especially below-ground traits, increases the ability to describe variation in the abundances and the functional characteristics of microbial communities ingrassland soils.

129 citations

Journal ArticleDOI
TL;DR: It is found that while fast-growing plants took up more of the added N forms than slow-growing species, this variation was not related to differences in the ability of plants to compete with microbes for N forms, as hypothesised.
Abstract: We used dual labelled stable isotope (13C and 15N) techniques to examine how grassland plant species with different growth strategies vary in their ability to compete with soil microbes for different chemical forms of nitrogen (N), both inorganic and organic. We also tested whether some plant species might avoid competition by preferentially using different chemical forms of N than microbes. This was tested in a pot experiment where monocultures of five co-existing grassland species, namely the grasses Agrostis capillaris, Anthoxanthum odoratum, Nardus stricta, Deschampsia flexuosa and the herb Rumex acetosella, were grown in field soil from an acid semi-natural temperate grassland. Our data show that grassland plant species with different growth strategies are able to compete effectively with soil microbes for most N forms presented to them, including inorganic N and amino acids of varying complexity. Contrary to what has been found in strongly N limited ecosystems, we did not detect any differential uptake of N on the basis of chemical form, other than that shoot tissue of fast-growing plant species was more enriched in 15N from ammonium-nitrate and glycine, than from more complex amino acids. Shoot tissue of slow-growing species was equally enriched in 15N from all these N forms. However, all species tested, least preferred the most complex amino acid phenylalanine, which was preferentially used by soil microbes. We also found that while fast-growing plants took up more of the added N forms than slow-growing species, this variation was not related to differences in the ability of plants to compete with microbes for N forms, as hypothesised. On the contrary, we detected no difference in microbial biomass or microbial uptake of 15N between fast and slow-growing plant species, suggesting that plant traits that regulate nutrient capture, as opposed to plant species-specific interactions with soil microbes, are the main factor controlling variation in uptake of N by grassland plant species. Overall, our data provide insights into the interactions between plants and soil microbes that influence plant nitrogen use in grassland ecosystems.

127 citations

Journal ArticleDOI
TL;DR: Increased soil temperature and reduced water content are associated with greater vascular plant biomass, in particular that of ericoids, and that this, in turn, is correlated with greater microbial biomass, which is characterized by an increasing dominance of fungi over bacteria with improved soil oxygenation.
Abstract: The ongoing expansion of shrub cover in response to climate change represents a unique opportunity to explore the link between soil microbial communities and vegetation changes. This link is particularly important in peatlands where shrub expansion is expected to feed back negatively on the carbon sink capacity of these ecosystems. Microbial community structure and function were measured seasonally in four peatlands located along an altitude gradient representing a natural gradient of climate and associated vascular plant abundance. We show that increased soil temperature and reduced water content are associated with greater vascular plant biomass, in particular that of ericoids, and that this, in turn, is correlated with greater microbial biomass. More specifically, microbial community structure is characterized by an increasing dominance of fungi over bacteria with improved soil oxygenation. We also found that the carbon and nitrogen stoichiometry of microbial biomass differs in relation to soil microbial community structure and that this is ultimately associated with a different investment in extracellular enzymatic activity. Our findings highlight the fact that the determination of the structural identity of microbial communities can help to explain the biogeochemical dynamics of organic matter and provide a better understanding of ecosystem response to environmental changes.

126 citations

Journal ArticleDOI
TL;DR: The results suggest that changes in the biomass of microorganisms in the rhizosphere of lightly-infested plants were not accompanied byChanges in the structure of the microbial community as the fungal-to-bacterial biomass ratio was unaffected by the herbivory treatment.
Abstract: It has been suggested that an important factor relating the dynamics of microbial communities and nutrient flux in grassland soils is a change in nondetrital inputs, such as root exudates, associated with below-ground herbivory. Our objective was to quantify the effects of different amounts of root infestation, and hence herbivory, by clover cyst nematodes (Heterodera trifolii) on the biomass and structure of rhizosphere microbial communities of white clover (Trifolium repens) plants grown in a grassland soil of low nutrient status. An additional aim was to test the hypothesis that these biotic interactions are influenced by soil texture, in particular a prevalence of soil pores of less than 30 μm dia. We found that at day 89, low amounts of root herbivory by H. trifolii, below the damage threshold for white clover, resulted in significant increases in total microbial biomass, measured by phospholipid fatty acid analysis (PLFA) and the abundance of gram-positive and gram-negative specific PLFAs in the rhizosphere soil. At this time there were also significant increases in the abundance of fatty acids synthesized by fungi and actinomycetes in the rhizosphere of infested clover plants. However, an increase of root herbivory above the damage threshold for clover, had no, or a negative effect on soil microbial biomass and individual PLFAs. The positive effects of root herbivory on rhizosphere microorganisms at day 89 were thought to correspond with an infestation by a second generation of nematodes. The results suggest that changes in the biomass of microorganisms in the rhizosphere of lightly-infested plants were not accompanied by changes in the structure of the microbial community as the fungal-to-bacterial biomass ratio was unaffected by the herbivory treatment. Soil texture had no effect on the ability of clover cyst nematodes to infest clover roots. There was also no soil type x nematode interaction, suggesting that the effects of root herbivory on the rhizosphere microbial community were similar in both soils. However, microbial biomass and the abundance of several individual PLFAs were higher in the clay loam than the sandy loam soil. The significance of these results in terms of nutrient flows in sustainable grassland systems is discussed.

126 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: It is argued that human actions are dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate, and the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper is asked.
Abstract: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

5,244 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations