scispace - formally typeset
Search or ask a question
Author

Richard D. Bardgett

Other affiliations: Lancaster University, English Nature, Aberystwyth University  ...read more
Bio: Richard D. Bardgett is an academic researcher from University of Manchester. The author has contributed to research in topics: Ecosystem & Soil biology. The author has an hindex of 115, co-authored 381 publications receiving 51685 citations. Previous affiliations of Richard D. Bardgett include Lancaster University & English Nature.


Papers
More filters
Journal ArticleDOI
TL;DR: This is the most comprehensive molecular analysis of soil fauna to date, and provides a tool to rapidly assess a missing component of soil biodiversity.
Abstract: A major problem facing ecologists is obtaining a complete picture of the highly complex soil community. While DNA-based methods are routinely used to assess prokaryote community structure and diversity in soil, approaches for measuring the total faunal community are not yet available. This is due to difficulties such as designing primers specific to a range of soil animals while excluding other eukaryotes. Instead, scientists use laborious and specialized taxonomic methods for extracting and identifying soil fauna. We examined this problem using DNA sequencing to profile soil animal diversity across two Alaskan ecosystems and compare the results with morphological analyses. Of 5267 sequences, representing 549 operational taxonomic units (OTU), only 18 OTUs were common to both sites. Representatives included 8 phyla, dominated by arthropods and nematodes. This is the most comprehensive molecular analysis of soil fauna to date, and provides a tool to rapidly assess a missing component of soil biodiversity.

61 citations

Journal ArticleDOI
TL;DR: The data suggest that, while single species and variations in diversity of microarthropods influence microbial abundance in soil, there is no effect on microbial or plant uptake of N, providing little support for the notion that microbial-feeding soil animals are regulators of microbial–plant competition for N.
Abstract: 1. In a microcosm experiment we examined the effects of individual species of microarthropods, and variations in microarthropod diversity of up to eight species, on soil microbial properties and the short-term partitioning of a dual-labelled organic nitrogen source (glycine-2-13C-15N) between a grassland plant, Agrostis capillaris, and the soil microbial biomass, to determine how soil fauna and their diversity influence plant–microbial competition for organic N. 2. We hypothesized that variations in the diversity of animals would influence the partitioning of 15N inputs between plants and the microbial biomass, due to the effect of animal grazing on the microbial biomass, and hence its ability to sequester N. 3. Certain individual species of Collembola influenced the microbial community of the soil. Folsomia quadrioculata reduced microbial biomass, whereas Mesaphorura macrochaeta enhanced arbuscular mycorrhizal (AM) colonization of A. capillaris roots. Effects of increasing species richness of microarthropods on microbial biomass and AM colonization were detected, but these effects could be interpreted in relation to the presence or absence of individual species. 4. Microbial uptake of added 15N was not affected by the presence of any of the individual species of animal in the monoculture treatments. Similarly, increasing diversity of microarthropods had no detectable effect on microbial 15N. 5. Root and shoot uptake of 15N was also largely unaffected by both single species and variations in diversity of microarthropods. However, one collembolan species, Ceratophysella denticulata, reduced root 15N capture when present in monoculture. We did not detect 13C in plant tissue under any experimental treatments, indicating that all N was taken up by plants after mineralization. 6. Our data suggest that, while single species and variations in diversity of microarthropods influence microbial abundance in soil, there is no effect on microbial or plant uptake of N. Overall, these data provide little support for the notion that microbial-feeding soil animals are regulators of microbial–plant competition for N.

60 citations

Journal ArticleDOI
TL;DR: It is suggested that biocrusts can slow down the negative effects of warming on the physiological status of the Gram negative bacterial community, however, as warming will likely reduce the cover and diversity of biocrUSTs, these positive effects will be reduced under climate change.
Abstract: Soil communities dominated by lichens and mosses (biocrusts) play key roles in maintaining ecosystem structure and functioning in drylands worldwide. However, few studies have explicitly evaluated how climate change-induced impacts on biocrusts affect associated soil microbial communities. We report results from a field experiment conducted in a semiarid Pinus halepensis plantation, where we setup an experiment with two factors: cover of biocrusts (low [50%]), and warming (control versus a ~2oC temperature increase). Warming reduced the richness and cover (~45%) of high biocrust cover areas 53 months after the onset of the experiment. This treatment did not change the ratios between the major microbial groups, as measured by phospholipid fatty acid analysis. Warming increased the physiological stress of the Gram negative bacterial community, as indicated by the cy17:0/16:1ω7 ratio. This response was modulated by the initial biocrust cover, as the increase in this ratio with warming was higher in areas with low cover. Our findings suggest that biocrusts can slow down the negative effects of warming on the physiological status of the Gram negative bacterial community. However, as warming will likely reduce the cover and diversity of biocrusts, these positive effects will be reduced under climate change.

60 citations

Journal ArticleDOI
TL;DR: In this article, the temporal variability in N pools, both aboveground and belowground, across two contrasting plant communities in high-Arctic Spitsbergen, Svalbard (78°N) was investigated.
Abstract: This study determined temporal variability in N pools, both aboveground and belowground, across two contrasting plant communities in high-Arctic Spitsbergen, Svalbard (78°N). We measured N pools in plant material, soil microbial biomass and soil organic matter in moist (Alopecurus borealis dominated) and dry (Dryas octopetala dominated) meadow communities at four times during the growing season. We found that plant, microbial and dissolved inorganic and organic N pools were subject to significant, but surprisingly low, temporal variation that was controlled primarily by changes in temperature and moisture availability over the short growing season. This temporal variability is much less than that experienced in other seasonally cold ecosystems such as alpine tundra where strong seasonal partitioning of N occurs between plant and soil microbial pools. While only a small proportion of the total ecosystem N, the microbial biomass represented the single largest of the dynamic N pools in both moist and dry meadow communities (3.4% and 4.6% of the total ecosystem N pool, respectively). This points to the importance of soil microbial community dynamics for N cycling in high-Arctic ecosystems. Microbial N was strongly and positively related to soil temperature in the dry meadow, but this relationship did not hold true in the wet meadow where other factors such as wetter soil conditions might constrain biological activity. Vascular live belowground plant parts represented the single largest plant N pool in both dry and moist meadow, constituting an average of 1.6% of the total N pool in both systems; this value did not vary across the growing season or between plant communities. Overall, our data illustrate a surprisingly low growing season variability in labile N pools in high-Arctic ecosystems, which we propose is controlled primarily by temperature and moisture.

59 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: It is argued that human actions are dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate, and the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper is asked.
Abstract: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

5,244 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations