scispace - formally typeset
Search or ask a question
Author

Richard D. Bardgett

Other affiliations: Lancaster University, English Nature, Aberystwyth University  ...read more
Bio: Richard D. Bardgett is an academic researcher from University of Manchester. The author has contributed to research in topics: Ecosystem & Soil biology. The author has an hindex of 115, co-authored 381 publications receiving 51685 citations. Previous affiliations of Richard D. Bardgett include Lancaster University & English Nature.


Papers
More filters
Journal ArticleDOI
01 May 2003-Ecology
TL;DR: It is predicted that subsequent microbial turnover and release of this N into the plant–soil system is the major pathway for plant N capture in these temperate grasslands.
Abstract: Although agricultural grassland soils have inherently high rates of net nitrogen (N) mineralization, they often have soil concentrations of soluble organic N that are comparable to inorganic N. We set out to examine in situ the significance of organic N for plant nutrition in grasslands of differing management intensity and soil fertility. Using in situ dual-labeling techniques (glycine-2-13C-15N) we measured preferential uptake of amino-acid N vs. inorganic N [(15NH4)2SO4] in early and late season in low-productivity Agrostis capillaris–Festuca ovina grassland and in agriculturally improved, high-productivity Lolium perenne-dominated grassland. The dominant soluble-N form differed greatly between grasslands. Inorganic N (especially nitrate N) dominated the soluble N pool of the highly productive improved grassland whereas amino acid N was the dominant soluble N form in the low-productivity unimproved grassland. There was no difference in the amount of 15N taken up by plants from the two N forms in either grassland. However, our data indicate that amino-acid N was taken up directly by plants of both grasslands and that more N was captured in this way by plants of low-productivity grassland where amino acids were the dominant soluble N form in soil. Our data from both grasslands also indicate significant microbial competition for added 15N from both N sources, but especially in the low-productivity grassland where the bulk of 15N added was sequestered by the microbial biomass. A significantly greater amount of added 15N was captured by the microbial biomass in the unimproved than in the improved grassland, and substantially more 15N was detected in the microbial biomass than in plant tissue in the unimproved grassland. On the basis of our findings, we predict that subsequent microbial turnover and release of this N into the plant–soil system is the major pathway for plant N capture in these temperate grasslands. Microbial sequestration of added N might be an important mechanism of N retention in these grasslands, especially in the low-productivity systems where microbial N sink strength is greater and organic matter slowly accumulates.

349 citations

Journal ArticleDOI
TL;DR: The findings of this study support the thesis that fungi play a more significant role in soil biological processes of low-input, unfertilized grasslands, than in intensively managed systems.
Abstract: This study aimed to: (1) determine whether soil microbial communities along a gradient from intensive (fertilized) to low-input (unfertilized) grassland management, shift in their composition as shown by an increase in the abundance of fungi relative to bacteria and (2) whether these shifts in soil microbial communities vary depending on season. At all sample dates soil microbial biomass-C and -N, and the total abundance of phospholipid fatty acids (PLFA) were highest in unfertilized, undrained treatments and lowest in fertilized and drained grassland. Similarly, microbial activity, measured as CO2-C respiration, was found to be at its lowest in the most intensively managed grassland. Measures of microbial biomass showed a high degree of seasonality, having summer maxima and winter minima. In contrast, PLFA measures had spring maxima and autumn minima. Seasonal and management differences were also observed within the microbial community. PLFA profiles revealed that most individual fatty acids were highest in the unfertilized treatments, and lowest in fertilized grassland. The fungal-to-bacterial biomass ratio was also highest in the unfertilized and lowest in the fertilized soils, suggesting that higher microbial biomass in former were more due to the growth of fungi than bacteria. As with total PLFA, the abundance of individual fatty acids showed a spring maximum and an autumn minimum. Seasonal differences in PLFA patterns were shown to be related to soil mineral-N and soil moisture contents. Factors controlling shifts in microbial community structure between sample dates and sites are discussed in relation to other studies. A critical assessment of the different measures of microbial biomass is also given. Overall, the findings of this study support the thesis that fungi play a more significant role in soil biological processes of low-input, unfertilized grasslands, than in intensively managed systems.

349 citations

Journal ArticleDOI
TL;DR: A review of the literature on ecosystem retrogression can be found in this paper, where the authors synthesize the findings from studies of long-term chronosequences that include retrogressive stages for systems spanning the boreal, temperate, and subtropical zones.
Abstract: Over time scales of thousands to millions of years, and in the absence of rejuvenating disturbances that initiate primary or early secondary succession, ecosystem properties such as net primary productivity, decomposition, and rates of nutrient cycling undergo substantial declines termed ecosystem retrogression. Retrogression results from the depletion or reduction in the availability of nutrients, and can only be reversed through rejuvenating disturbance that resets the system; this differs from age-related declines in forest productivity that are driven by shorter-term depression of nutrient availability and plant ecophysiological process rates that occur during succession. Here we review and synthesize the findings from studies of long-term chronosequences that include retrogressive stages for systems spanning the boreal, temperate, and subtropical zones. Ecosystem retrogression has been described by ecologists, biogeochemists, geologists, and pedologists, each of which has developed somewhat independent conceptual frameworks; our review seeks to unify this literature in order to better understand the causes and consequences of retrogression. Studies of retrogression have improved our knowledge of how long-term pedogenic changes drive shorter-term biological processes, as well as the consequences of these changes for ecosystem development. Our synthesis also reveals that similar patterns of retrogression (involving reduced soil fertility, predictable shifts in organismic traits, and ecological processes) occur in systems with vastly different climatic regimes, geologic substrates, and vegetation types, even though the timescales and mechanisms driving retrogression may vary greatly among sites. Studies on retrogression also provide evidence that in many regions, high biomass or "climax" forests are often transient, and do not persist indefinitely in the absence of rejuvenating disturbance. Finally, our review highlights that studies on retrogressive chronosequences in contrasting regions provide unparalleled opportunities for developing general principles about the long-term feedbacks between biological communities and pedogenic processes, and how these control ecosystem development.

337 citations

Journal ArticleDOI
TL;DR: The results indicate that plant species from a single habitat can result in significant divergence in soil properties and functioning when grown in monoculture, and that many of these changes are strongly and predictably linked to variation in plant traits associated with different growth strategies.
Abstract: Summary 1. Global change is likely to alter plant community structure, with consequences for the structure and functioning of the below-ground community and potential feedbacks to climate change. Understanding the mechanisms behind these plant–soil interactions and feedbacks to the Earth-system is therefore crucial. One approach to understanding such mechanisms is to use plant traits as predictors of functioning. 2. We used a field-based monoculture experiment involving nine grassland species that had been growing on the same base soil for 7 years to test whether leaf, litter and root traits associated with different plant growth strategies can be linked to an extensive range of soil properties relevant to carbon, nitrogen and phosphorus cycling. Soil properties included the biomass and structure of the soil microbial community, soil nutrients, soil microclimate and soil process rates. 3. Plant species with a high relative growth rate (RGR) were associated with high leaf and litter quality (e.g. low toughness, high nitrogen concentrations), an elevated biomass of bacteria relative to fungi in soil, high rates of soil nitrogen mineralization and concentrations of extractable inorganic nitrogen, and to some extent higher available phosphorus pools. 4. In contrast to current theory, species with a high RGR and litter quality were associated with soils with a lower rate of soil respiration and slow decomposition rates. This indicates that predicting processes that influence carbon cycling from plant traits may be more complex than predicting processes that influence nitrogen and phosphorus cycling. 5. Root traits did not show strong relationships to RGR, leaf or litter traits, but were strongly correlated with several soil properties, particularly the biomass of bacteria relative to fungi in soil and measures relating to soil carbon cycling. 6. Synthesis. Our results indicate that plant species from a single habitat can result in significant divergence in soil properties and functioning when grown in monoculture, and that many of these changes are strongly and predictably linked to variation in plant traits associated with different growth strategies. Traits therefore have the potential to be a powerful tool for understanding the mechanisms behind plant–soil interactions and ecosystem functioning, and for predicting how changes in plant species composition associated with global change will feedback to the Earth-system.

333 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of dry-rewetting on soil microbial properties and nutrient release by leaching from two soils taken from adjacent grasslands with different histories of management intensity were studied.
Abstract: The effects of a dry-rewetting event (D/RW) on soil microbial properties and nutrient release by leaching from two soils taken from adjacent grasslands with different histories of management intensity were studied. These were a low-productivity grassland, with no history of fertilizer application and a high-productivity grassland with a history of high fertilizer application, referred to as unimproved and improved grassland, respectively. The use of phospholipid fatty acid analysis (PLFA) revealed that the soil of the unimproved grassland had a significantly greater microbial biomass, and a greater abundance of fungi relative to bacteria than did the improved grassland. Soils from both grasslands were maintained at 55% water holding capacity (WHC) or dried to 10% WHC and rewetted to 55% WHC, and then sampled on days 1, 3, 9, 16, 30 and 50 after rewetting. The D/RW stress significantly reduced microbial biomass carbon (C), fungal PLFA and the ratio of fungal-to-bacterial PLFA in both soils. In contrast, D/RW increased microbial activity, but had no effect on total PLFA and bacterial PLFA in either soil. Microbial biomass nitrogen (N) was reduced significantly by D/RW in both soils, but especially in those of the improved grassland. In terms of nutrient leaching, the D/RW stress significantly increased concentrations of dissolved organic C and dissolved organic N in leachates taken from the improved soil only. This treatment increased the concentration of dissolved inorganic N in leachate of both soils, but this effect was most pronounced in the improved soil. Overall, our data show that D/RW stress leads to greater nutrient leaching from improved than from unimproved grassland soils, which have a greater microbial biomass and abundance of fungi relative to bacteria. This finding supports the notion that soils with more fungal-rich communities are better able to retain nutrients under D/RW than are their intensively managed counterparts with lower fungal to bacterial ratios, and that D/RW can enhance nutrient leaching with potential implications for water quality.

330 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: It is argued that human actions are dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate, and the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper is asked.
Abstract: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

5,244 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations