scispace - formally typeset
Search or ask a question
Author

Richard D. Handy

Bio: Richard D. Handy is an academic researcher from University of Plymouth. The author has contributed to research in topics: Medicine & Copper toxicity. The author has an hindex of 56, co-authored 166 publications receiving 15291 citations. Previous affiliations of Richard D. Handy include Heriot-Watt University & Cihan University.


Papers
More filters
Journal ArticleDOI
TL;DR: This review critiques existing nanomaterial research in freshwater, marine, and soil environments and illustrates the paucity of existing research and demonstrates the need for additional research.
Abstract: The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.

2,566 citations

Journal ArticleDOI
TL;DR: The emerging literature on the ecotoxicological literature shows toxic effects on fish and invertebrates, often at low mg l−1 concentrations of nanoparticles, however, data on bacteria, plants, and terrestrial species are particularly lacking at present.
Abstract: The emerging literature on the ecotoxicity of nanoparticles and nanomaterials is summarised, then the fundamental physico-chemistry that governs particle behaviour is explained in an ecotoxicological context. Techniques for measuring nanoparticles in various biological and chemical matrices are also outlined. The emerging ecotoxicological literature shows toxic effects on fish and invertebrates, often at low mg l−1 concentrations of nanoparticles. However, data on bacteria, plants, and terrestrial species are particularly lacking at present. Initial data suggest that at least some manufactured nanoparticles may interact with other contaminants, influencing their ecotoxicity. Particle behaviour is influenced by particle size, shape, surface charge, and the presence of other materials in the environment. Nanoparticles tend to aggregate in hard water and seawater, and are greatly influenced by the specific type of organic matter or other natural particles (colloids) present in freshwater. The state of dispersion will alter ecotoxicity, but many abiotic factors that influence this, such as pH, salinity, and the presence of organic matter remain to be systematically investigated as part of ecotoxicological studies. Concentrations of manufactured nanoparticles have rarely been measured in the environment to date. Various techniques are available to characterise nanoparticles for exposure and dosimetry, although each of these methods has advantages and disadvantages for the ecotoxicologist. We conclude with a consideration of implications for environmental risk assessment of manufactured nanoparticles.

868 citations

Journal ArticleDOI
TL;DR: A special issue on the ecotoxicology and environmental chemistry of nanoparticles (NPs), and nanomaterials (NMs), was published in this paper, with a focus on the effects of pollution on NPs.
Abstract: This paper introduces a special issue on the ecotoxicology and environmental chemistry of nanoparticles (NPs), and nanomaterials (NMs), in the journal Ecotoxicology. There are many types of NMs and the scientific community is making observations on NP ecotoxicity to inform the wider debate about the risks and benefits of these materials. Natural NPs have existed in the environment since the beginning of Earth’s history, and natural sources can be found in volcanic dust, most natural waters, soils and sediments. Natural NPs are generated by a wide variety of geological and biological processes, and while there is evidence that some natural NPs can be toxic, organisms have also evolved in an environment containing natural NPs. There are concerns that natural nano-scale process could be influenced by the presence of pollution. Manufactured NPs show some complex colloid and aggregation chemistry, which is likely to be affected by particle shape, size, surface area and surface charge, as well as the adsorption properties of the material. Abiotic factors such as pH, ionic strength, water hardness and the presence of organic matter will alter aggregation chemistry; and are expected to influence toxicity. The physico-chemistry is essential to understanding of the fate and behaviour of NPs in the environment, as well as uptake and distribution within organisms, and the interactions of NPs with other pollutants. Data on biological effects show that NPs can be toxic to bacteria, algae, invertebrates and fish species, as well as mammals. However, much of the ecotoxicological data is limited to species used in regulatory testing and freshwater organism. Data on bacteria, terrestrial species, marine species and higher plants is particularly lacking. Detailed investigations of absorption, distribution, metabolism and excretion (ADME) remain to be performed on species from the major phyla, although there are some data on fish. The environmental risk assessment of NMs could be performed using the existing tiered approach and regulatory framework, but with modifications to methodology including chemical characterisation of the materials being used. There are many challenges ahead, and controversies (e.g., reference substances for ecotoxicology), but knowledge transfer from mammalian toxicology, colloid chemistry, as well as material and geological sciences, will enable ecotoxicology studies to move forward in this new multi-disciplinary field.

820 citations

Journal ArticleDOI
TL;DR: The toxicity of TiO2 NPs to the main body systems of rainbow trout is described to conclude that titanium dioxide nanoparticles are not a major ionoregulatory toxicant, or haemolytic, at the concentration and exposure times used.

747 citations

Journal ArticleDOI
TL;DR: It is concluded that SWCNTs are a respiratory toxicant in trout, the fish are able to manage oxidative stress and osmoregulatory disturbances, but other cellular pathologies raise concerns about cell cycle defects, neurotoxicity, and as yet unidentified blood borne factors that possibly mediate systemic pathologies.

581 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations

Journal ArticleDOI
TL;DR: A detailed overview of the synthesis, properties and applications of nanoparticles exist in different forms NPs are tiny materials having size ranges from 1 to 100nm They can be classified into different classes based on their properties, shapes or sizes.

3,282 citations

Journal ArticleDOI
TL;DR: A broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance is provided.
Abstract: Heavy metals such as Cu and Zn are essential for normal plant growth, although elevated concentrations of both essential and non-essential metals can result in growth inhibition and toxicity symptoms. Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. These include roles for the following: for mycorrhiza and for binding to cell wall and extracellular exudates; for reduced uptake or efflux pumping of metals at the plasma membrane; for chelation of metals in the cytosol by peptides such as phytochelatins; for the repair of stress-damaged proteins; and for the compartmentation of metals in the vacuole by tonoplast-located transporters. This review provides a broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance.

2,751 citations

Journal ArticleDOI
TL;DR: This review critiques existing nanomaterial research in freshwater, marine, and soil environments and illustrates the paucity of existing research and demonstrates the need for additional research.
Abstract: The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.

2,566 citations

Journal ArticleDOI
TL;DR: It is concluded that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses, and fundamental changes in chemical testing and safety determination are needed to protect human health.
Abstract: For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from...

2,475 citations