scispace - formally typeset
Search or ask a question
Author

Richard D. Tilley

Bio: Richard D. Tilley is an academic researcher from University of New South Wales. The author has contributed to research in topics: Nanoparticle & Quantum dot. The author has an hindex of 45, co-authored 203 publications receiving 7419 citations. Previous affiliations of Richard D. Tilley include Industrial Research Limited & MacDiarmid Institute for Advanced Materials and Nanotechnology.


Papers
More filters
Journal ArticleDOI
TL;DR: The chemical process used to terminate the surfaces of the silicon quantum dots changes the internal electronic structure and thus plays an important role in the resultant emission wavelength and radiative lifetime, and ultimately determines the solubility.
Abstract: For silicon quantum dots to be used in biomedical applications it is essential that they have a substantial photoluminescence quantum yield in the visible region, have a fast radiative recombination rate, and are water soluble and hydrophilic to prevent aggregation and precipitation in a biological environment. The chemical process used to terminate the surfaces of the silicon quantum dots changes the internal electronic structure and thus plays an important role in the resultant emission wavelength and radiative lifetime, and ultimately determines the solubility. [18] Silicon quantum dots with an oxide surface passivation typically display a dipole-forbidden yellow-red emission with radiative lifetimes of 10 3 –10 6 s. [18, 26] This slow rate of recombination limits the use of oxide-passivated silicon quantum dots in biological imaging. However, silicon quantum dots with a hydrogen or carbon surface passivation have electric-dipole-allowed direct band gap transitions that lead to blue photoluminescence with fast recombination rates of 10 8 –10 9 s. [18, 20]

515 citations

Journal ArticleDOI
TL;DR: This paper reviews the recent progress in the preparation of oxide-based and heteroatom-doped particles, which are functionalized with organic molecules or doped with heteroatoms, the physicochemical properties of the particles and the possibilities for their photofunctional applications as complex systems.

317 citations

Journal ArticleDOI
TL;DR: This minireview surveys the different approaches in solution-phase synthesis that have been successfully adopted for achieving shaped platinum and palladium nanoparticles that are enclosed with specific crystallographic facets.
Abstract: Platinum and palladium are important catalysts for a wide variety of industrial processes. With the increasing demands of these materials, the development of high-performance catalysts is an important area of research, and as a result, shape control synthesis has become one of the leading research focuses. This minireview surveys the different approaches in solution-phase synthesis that have been successfully adopted for achieving shaped platinum and palladium nanoparticles that are enclosed with specific crystallographic facets. In addition, catalytic studies of the shaped nanoparticles are highlighted, in which promising results have been reported in terms of enhanced activity and selectivity. The future outlook discusses the aspects in synthesis and catalysis to be considered for the development of highly efficient and effective catalysts.

308 citations

Journal ArticleDOI
20 Feb 2013-ACS Nano
TL;DR: Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the parts per million level in Si NCs gives rise to the blue emission.
Abstract: Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms and are biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared via solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It desc...

265 citations

Journal ArticleDOI
TL;DR: Cytotoxicity and cell viability assay conducted on silicon dots capped with polar molecules indicated low toxicity with quantum dots with more reactive functionalities found to be more toxic.
Abstract: This Article describes research on chemical reactions on molecules attached to the surface of silicon quantum dots that have been performed to produce quantum dots with reactive surface functionalities such as diols and epoxides. Characterization of the surface reactions includes NMR and FT-IR studies, and the quantum dots were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Cytotoxicity and cell viability assay conducted on silicon dots capped with polar molecules indicated low toxicity with quantum dots with more reactive functionalities found to be more toxic. The silicon quantum dots photoluminesce and have been used as a blue chromophore for the biological imaging of cells.

225 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI

3,711 citations