scispace - formally typeset
Search or ask a question
Author

Richard de Dear

Bio: Richard de Dear is an academic researcher from University of Sydney. The author has contributed to research in topics: Thermal comfort & ASHRAE 90.1. The author has an hindex of 55, co-authored 193 publications receiving 14581 citations. Previous affiliations of Richard de Dear include Queensland University of Technology & Macquarie University.


Papers
More filters
Journal Article
TL;DR: In this paper, the adaptive hypothesis predicts that contextual factors and past thermal history modify building occupants' thermal expectations and preferences, which is contrary to static assumptions underlying the current ASHRAE comfort standard 55-92.
Abstract: The adaptive hypothesis predicts that contextual factors and past thermal history modify building occupants' thermal expectations and preferences. One of the predictions of the adaptive hypothesis is that people in warm climate zones prefer warmer indoor temperatures than people living in cold climate zones. This is contrary to the static assumptions underlying the current ASHRAE comfort standard 55-92. To examine the adaptive hypothesis and its implications for Standard 55-92, the ASHRAE RP-884 project assembled a quality-controlled database from thermal comfort field experiments worldwide (circa 21,000 observations from 160 buildings). Our statistical analysis examined the semantics of thermal comfort in terms of thermal sensation,

1,455 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of an extensive literature review on the topic of thermal adaptations in the built environment, most likely resulting from a combination of past thermal history in the buildings and differences in levels of perceived control.

1,261 citations

01 Feb 2002
TL;DR: The adaptive comfort standard (ACS) as discussed by the authors is based on the analysis of 21,000 sets of raw data compiled from field studies in 160 buildings located on four continents in varied climatic zones.
Abstract: Recently accepted revisions to ASHRAE Standard 55—thermal environmental conditions for human occupancy, include a new adaptive comfort standard (ACS) that allows warmer indoor temperatures for naturally ventilated buildings during summer and in warmer climate zones. The ACS is based on the analysis of 21,000 sets of raw data compiled from field studies in 160 buildings located on four continents in varied climatic zones. This paper summarizes this earlier adaptive comfort research, presents some of its findings for naturally ventilated buildings, and discusses the process of getting the ACS incorporated into Standard 55. We suggest ways the ACS could be used for the design, operation, or evaluation of buildings, and for research applications. We also use GIS mapping techniques to examine the energy-savings potential of the ACS on a regional scale across the US. Finally, we discuss related new directions for researchers and practitioners involved in the design of buildings and their environmental control systems.

1,053 citations

Journal ArticleDOI
TL;DR: The adaptive comfort standard (ACS) as mentioned in this paper is based on the analysis of 21,000 sets of raw data compiled from field studies in 160 buildings located on four continents in varied climatic zones.

994 citations

Journal ArticleDOI
TL;DR: UTCI is defined as the isothermal air temperature of the reference condition that would elicit the same dynamic response (strain) of the physiological model of thermoregulation for any combination of air temperature, wind, radiation, and humidity (stress).
Abstract: Existing procedures for the assessment of the thermal environment in the fields of public weather services, public health systems, precautionary planning, urban design, tourism and recreation and climate impact research exhibit significant shortcomings. This is most evident for simple (mostly two-parameter) indices, when comparing them to complete heat budget models developed since the 1960s. ISB Commission 6 took up the idea of developing a Universal Thermal Climate Index (UTCI) based on the most advanced multi-node model of thermoregulation representing progress in science within the last three to four decades, both in thermo-physiological and heat exchange theory. Creating the essential research synergies for the development of UTCI required pooling the resources of multidisciplinary experts in the fields of thermal physiology, mathematical modelling, occupational medicine, meteorological data handling (in particular radiation modelling) and application development in a network. It was possible to extend the expertise of ISB Commission 6 substantially by COST (a European programme promoting Cooperation in Science and Technology) Action 730 so that finally over 45 scientists from 23 countries (Australia, Canada, Israel, several Europe countries, New Zealand, and the United States) worked together. The work was performed under the umbrella of the WMO Commission on Climatology (CCl). After extensive evaluations, Fiala’s multi-node human physiology and thermal comfort model (FPC) was adopted for this study. The model was validated extensively, applying as yet unused data from other research groups, and extended for the purposes of the project. This model was coupled with a state-of-the-art clothing model taking into consideration behavioural adaptation of clothing insulation by the general urban population in response to actual environmental temperature. UTCI was then derived conceptually as an equivalent temperature (ET). Thus, for any combination of air temperature, wind, radiation, and humidity (stress), UTCI is defined as the isothermal air temperature of the reference condition that would elicit the same dynamic response (strain) of the physiological model. As UTCI is based on contemporary science its use will standardise applications in the major fields of human biometeorology, thus making research results comparable and physiologically relevant.

629 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
TL;DR: It is shown that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates.
Abstract: Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.

2,903 citations

01 Jan 1998
TL;DR: In this paper, the authors examined the semantics of thermal comfort in terms of thermal sensation, acceptability, and preference, as a function of both indoor and outdoor temperature, as predicted by the adaptive hypothesis.
Abstract: The adaptive hypothesis predicts that contextual factors and past thermal history modify building occupants' thermal expectations and preferences. One of the predictions of the adaptive hypothesis is that people in warm climate zones prefer warmer indoor temperatures than people living in cold climate zones. This is contrary to the static assumptions underlying the current ASHRAE comfort standard 55-92. To examine the adaptive hypothesis and its implications for Standard 55-92, the ASHRAE RP-884 project assembled a quality-controlled database from thermal comfort field experiments worldwide (circa 21,000 observations from 160 buildings). Our statistical analysis examined the semantics of thermal comfort in terms of thermal sensation, acceptability, and preference, as a function of both indoor and outdoor temperature. Optimum indoor temperatures tracked both prevailing indoor and outdoor temperatures, as predicted by the adaptive hypothesis. The static predicted means vote (PMV) model was shown to be partially adaptive by accounting for behavioral adjustments, and fully explained adaptation occurring in HVAC buildings. Occupants in naturally ventilated buildings were tolerant of a significantly wider range of temperatures, explained by a combination of both behavioral adjustment and psychological adaptation. These results formed the basis of a proposal for a variable indoor temperature standard.

1,747 citations