scispace - formally typeset
Search or ask a question

Showing papers by "Richard Durbin published in 2003"


Journal ArticleDOI
16 Jan 2003-Nature
TL;DR: It is found that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles.
Abstract: A principal challenge currently facing biologists is how to connect the complete DNA sequence of an organism to its development and behaviour. Large-scale targeted-deletions have been successful in defining gene functions in the single-celled yeast Saccharomyces cerevisiae, but comparable analyses have yet to be performed in an animal. Here we describe the use of RNA interference to inhibit the function of ∼86% of the 19,427 predicted genes of C. elegans. We identified mutant phenotypes for 1,722 genes, about two-thirds of which were not previously associated with a phenotype. We find that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles. Our resulting data set and reusable RNAi library of 16,757 bacterial clones will facilitate systematic analyses of the connections among gene sequence, chromosomal location and gene function in C. elegans.

3,529 citations


Journal ArticleDOI
TL;DR: Comparisons of the two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers, which will help to understand the evolutionary forces that mold nematode genomes.
Abstract: The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.

954 citations


Journal ArticleDOI
TL;DR: The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications, an increase of nearly 15% since the inception of Inter pro.
Abstract: InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).

725 citations


Journal ArticleDOI
Andrew J. Mungall1, Sophie Palmer1, Sarah Sims1, C A Edwards1  +167 moreInstitutions (1)
23 Oct 2003-Nature
TL;DR: Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block, and detects recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.
Abstract: Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb.

633 citations


Journal ArticleDOI
TL;DR: The Ensembl database project provides a bioinformatics framework to organise biology around the sequences of large genomes, a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files.
Abstract: The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

249 citations


Journal ArticleDOI
01 Jan 2003
TL;DR: The past two years have seen a significant expansion in the biological scope of WormBase, including the integration of large-scale, genome-wide data sets, the inclusion of genome sequence and gene predictions from related species and active literature curation.
Abstract: WormBase (http://www.wormbase.org/) is a web-accessible central data repository for information about Caenorhabditis elegans and related nematodes. The past two years have seen a significant expansion in the biological scope of WormBase, including the integration of large-scale, genome-wide data sets, the inclusion of genome sequence and gene predictions from related species and active literature curation. This expansion of data has also driven the development and refinement of user interfaces and operability, including a new Genome Browser, new searches and facilities for data access and the inclusion of extensive documentation. These advances have expanded WormBase beyond the obvious target audience of C. elegans researchers, to include researchers wishing to explore problems in functional and comparative genomics within the context of a powerful genetic system.

122 citations


Journal ArticleDOI
TL;DR: This work discovers an unannotated Tf_Otx Pfam domain on the cone rod homeobox protein, which suggests a possible mechanism for how the V242M mutation on this protein causes cone-rod dystrophy.
Abstract: Most modern speech recognition uses probabilistic models to interpret a sequence of sounds. Hidden Markov models, in particular, are used to recognize words. The same techniques have been adapted to find domains in protein sequences of amino acids. To increase word accuracy in speech recognition, language models are used to capture the information that certain word combinations are more likely than others, thus improving detection based on context. However, to date, these context techniques have not been applied to protein domain discovery. Here we show that the application of statistical language modeling methods can significantly enhance domain recognition in protein sequences. As an example, we discover an unannotated Tf_Otx Pfam domain on the cone rod homeobox protein, which suggests a possible mechanism for how the V242M mutation on this protein causes cone-rod dystrophy.

60 citations


Journal ArticleDOI
TL;DR: This work states that in a query preprocessing step, a set of tables can be built that permit one to eliminate a large fraction of the dynamic programming matrix from consideration and to compute several steps of the remainder with a single table lookup.
Abstract: Searching a database for a local alignment to a query under a typical scoring scheme, such as PAM120 or BLOSUM62 with affine gap costs, is a computation that has resisted algorithmic improvement due to its basis in dynamic programming and the weak nature of the signals being searched for. In a query preprocessing step, a set of tables can be built that permit one to (a) eliminate a large fraction of the dynamic programming matrix from consideration and (b) to compute several steps of the remainder with a single table lookup. While this result is not an asymptotic improvement over the original Smith–Waterman algorithm, its complexity is characterized in terms of some sparse features of the matrix and it yields the fastest software implementation to date for such searches.

11 citations