scispace - formally typeset
Search or ask a question
Author

Richard E. DeVor

Bio: Richard E. DeVor is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Machining & Drill. The author has an hindex of 44, co-authored 178 publications receiving 8206 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a mechanistic model for the force system in end milling, which is based on chip load, cut geometry, and the relationship between cutting forces and chip load.

477 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review of the literature that is enhancing our understanding of the mechanics of the rapidly growing field of micromachining and discuss both experimental and modeling studies.
Abstract: This paper provides a comprehensive review of the literature, mostly of the last 10-15 years, that is enhancing our understanding of the mechanics of the rapidly growing field of micromachining. The paper focuses on the mechanics of the process, discussing both experimental and modeling studies, and includes some work that, while not directly focused on micromachining, provides important insights to the field. Experimental work includes the size effect and minimum chip thickness effect, elastic-plastic deformation, and microstructure effects in micromachining. Modeling studies include molecular dynamics methods, finite element methods, mechanistic modeling work, and the emerging field of multiscale modeling. Some comments on future needs and directions are also offered.

406 citations

Journal ArticleDOI
TL;DR: In this paper, mathematical models were developed for the cutting geometry, tooth radius, chip thickness and entry and exit angles for end milling with cutter offset or runout, which were merged with previously developed cutting force models to predict cutting force characteristics with cutter runout.

344 citations


Cited by
More filters
Book
13 Apr 2000
TL;DR: In this paper, the authors discuss the application of metal cutting to manufacturing problems, including the design of real-time trajectory generation and interpolation algorithms, and CNC-oriented error analysis.
Abstract: Metal cutting is a widely used method of producing manufactured products. The technology of metal cutting has advanced considerably along with new materials, computers, and sensors. This new edition treats the scientific principles of metal cutting and their practical application to manufacturing problems. It begins with metal cutting mechanics, principles of vibration, and experimental modal analysis applied to solving shop floor problems. Notable is the in-depth coverage of chatter vibrations, a problem experienced daily by manufacturing engineers. The essential topics of programming, design, and automation of CNC (computer numerical control) machine tools, NC (numerical control) programming, and CAD/CAM technology are discussed. The text also covers the selection of drive actuators, feedback sensors, modeling and control of feed drives, the design of real time trajectory generation and interpolation algorithms, and CNC-oriented error analysis in detail. Each chapter includes examples drawn from industry, design projects, and homework problems. This book is ideal for advanced undergraduate and graduate students, as well as practicing engineers.

1,854 citations

Journal ArticleDOI
TL;DR: The literature on mass customization is surveyed and approaches to implementing mass customization are compiled and classified and future research directions are outlined.

1,296 citations

Journal ArticleDOI
TL;DR: A review of the present status of the chemistry, properties, uses and methods of manufacturing zein can be found in this article, where the characteristics of zein are discussed in terms of its composition, structure, solubility in various solvents and gelation properties.

1,225 citations

Journal ArticleDOI
TL;DR: There are significant roots in general and in particular to the CIRP community – which point towards CPPS, and expectations towards research in and implementation of CPS and CPPS are outlined.
Abstract: One of the most significant advances in the development of computer science, information and communication technologies is represented by the cyber-physical systems (CPS). They are systems of collaborating computational entities which are in intensive connection with the surrounding physical world and its on-going processes, providing and using, at the same time, data-accessing and data-processing services available on the Internet. Cyber-physical production systems (CPPS), relying on the latest, and the foreseeable further developments of computer science, information and communication technologies on one hand, and of manufacturing science and technology, on the other, may lead to the 4th industrial revolution, frequently noted as Industrie 4.0. The paper underlines that there are significant roots in general – and in particular to the CIRP community – which point towards CPPS. Expectations towards research in and implementation of CPS and CPPS are outlined and some case studies are introduced. Related new R&D challenges are highlighted.

1,123 citations

Journal ArticleDOI
TL;DR: In this paper, the past contributions of CIRP in these areas are reviewed and an up-to-date comprehensive survey of sensor technologies, signal processing, and decision making strategies for process monitoring is provided.

1,074 citations