scispace - formally typeset
Search or ask a question
Author

Richard E. Nygren

Bio: Richard E. Nygren is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Divertor & Fusion power. The author has an hindex of 23, co-authored 97 publications receiving 2156 citations.
Topics: Divertor, Fusion power, Heat flux, Lithium, Tokamak


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explored novel concepts for fusion chamber technology that can substantially improve the attractiveness of fusion energy systems, including the potential for: (1) high power density capability; (2) higher plasma β and stable physics regimes if liquid metals are used; (3) increased disruption survivability; (4) reduced volume of radioactive waste; (5) reduced radiation damage in structural materials; and (6) higher availability.

319 citations

Journal ArticleDOI
TL;DR: In this article, the effect of edge power loading on the shape of the ITER divertor was investigated, and it was concluded that the geometrical approximation for leading edge power load on radially misaligned poloidal leading edges is indeed valid.
Abstract: The key remaining physics design issue for the ITER tungsten (W) divertor is the question of monoblock (MB) front surface shaping in the high heat flux target areas of the actively cooled targets. Engineering tolerance specifications impose a challenging maximum radial step between toroidally adjacent MBs of 0.3 mm. Assuming optical projection of the parallel heat loads, magnetic shadowing of these edges is required if quasi-steady state melting is to be avoided under certain conditions during burning plasma operation and transiently during edge localized mode (ELM) or disruption induced power loading. An experiment on JET in 2013 designed to investigate the consequences of transient W edge melting on ITER, found significant deficits in the edge power loads expected on the basis of simple geometric arguments, throwing doubt on the understanding of edge loading at glancing field line angles. As a result, a coordinated multi-experiment and simulation effort was initiated via the International Tokamak Physics Activity (ITPA) and through ITER contracts, aimed at improving the physics basis supporting a MB shaping decision from the point of view both of edge power loading and melt dynamics. This paper reports on the outcome of this activity, concluding first that the geometrical approximation for leading edge power loading on radially misaligned poloidal leading edges is indeed valid. On this basis, the behaviour of shaped and unshaped monoblock surfaces under stationary and transient loads, with and without melting, is compared in order to examine the consequences of melting, or power overload in context of the benefit, or not, of shaping. The paper concludes that MB top surface shaping is recommended to shadow poloidal gap edges in the high heat flux areas of the ITER divertor targets.

120 citations

Journal ArticleDOI
TL;DR: A review of the potential of robust PFCs with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions as mentioned in this paper.
Abstract: This review of the potential of robust plasma facing components (PFCs) with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions. In the paper are a set of questions and related criteria by which we will judge the progress and readiness of liquid surface PFCs. Part-II (separate paper) will cover R&D on the technology-oriented aspects of liquid surfaces including the liquid surfaces as integrated first walls in tritium breeding blankets, tritium retention and recovery, and safety.

95 citations

Journal ArticleDOI
TL;DR: The Advanced Divertor and RF tokamak eXperiment (ADX) as discussed by the authors is designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO).
Abstract: The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)-a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (>= 6.5 T, 1.5 MA), high power density facility (P/S similar to 1.5 MW m(-2)) will test innovative divertor ideas, including an 'X-point target divertor' concept, at the required performance parameters-reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region-while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magneticfield side-the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination-advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions-will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv: 1409.3540)) that makes use of high-temperature superconductor technology-a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors.
Abstract: The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R&D avenues for their resolution are presented.

1,187 citations

Proceedings ArticleDOI
23 Aug 1992
TL;DR: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour.
Abstract: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour. / Is oat contribu6 h la qualit6 scientifique et ,5 I'hmuog6t~6it6 pr6sentationntlle de leurs articles en refondant les versions iuitiales soumises an comit6 de programme, ea acceptant de suivre les r~gles de pr6sentation indiqu6es, et en nous envoyant parrots plusieurs versions am61ior6es surun point ou sur l'autrc.

824 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations

Journal Article
TL;DR: The advantages of nuclear fusion as an energy source and research progress in this area are summarized in this article, where the current state of the art is described, including the Compact Ignition Tokamak (CIT), International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II.
Abstract: The advantages of nuclear fusion as an energy source and research progress in this area are summarized. The current state of the art is described. Laser fusion, inertial confinement fusion, and magnetic fusion (the tokamak) are explained, the latter in some detail. Remaining problems and planned future reactors are considered. They are the Compact Ignition Tokamak (CIT), the International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II. The design of the latter is shown. >

596 citations

Journal ArticleDOI
TL;DR: In this article, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination.
Abstract: Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion–strengthened options) and silicon carbide ceramic composites emerge as robust structural...

505 citations