scispace - formally typeset
Search or ask a question
Author

Richard H. Blockley

Bio: Richard H. Blockley is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 113 citations.

Papers
More filters
Book
06 Dec 2010

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on experimental observations of strain localization and the theory and numerical analysis of both slip irreversibilities and low energy configuration defect structures, which are the early signs of damage during cyclic loading.

495 citations

Journal ArticleDOI
TL;DR: The ELBE scheme is the most inferior among the LB models tested in this study, thus is unfit for carrying out numerical simulations in practice and the MRT and TRT LB models are superior to the ELBE and LBGK models in terms of accuracy, stability, and computational efficiency.
Abstract: We conduct a comparative study to evaluate several lattice Boltzmann (LB) models for solving the near incompressible Navier-Stokes equations, including the lattice Boltzmann equation with the multiple-relaxation-time (MRT), the two-relaxation-time (TRT), the single-relaxation-time (SRT) collision models, and the entropic lattice Boltzmann equation (ELBE). The lid-driven square cavity flow in two dimensions is used as a benchmark test. Our results demonstrate that the ELBE does not improve the numerical stability of the SRT or the lattice Bhatnagar-Gross-Krook (LBGK) model. Our results also show that the MRT and TRT LB models are superior to the ELBE and LBGK models in terms of accuracy, stability, and computational efficiency and that the ELBE scheme is the most inferior among the LB models tested in this study, thus is unfit for carrying out numerical simulations in practice. Our study suggests that, to optimize the accuracy, stability, and efficiency in the MRT model, it requires at least three independently adjustable relaxation rates: one for the shear viscosity ν (or the Reynolds number Re), one for the bulk viscosity ζ, and one to satisfy the criterion imposed by the Dirichlet boundary conditions which are realized by the bounce-back-type boundary conditions.

314 citations

Reference EntryDOI
15 Dec 2010
TL;DR: A basic overview of optimization techniques is provided, and the standard form of the general non-linear, constrained optimization problem is presented, and various techniques for solving the resulting optimization problem are discussed.
Abstract: A basic overview of optimization techniques is provided. The standard form of the general non-linear, constrained optimization problem is presented, and various techniques for solving the resulting optimization problem are discussed. The techniques are classified as either local (typically gradient-based) or global (typically nongradient based or evolutionary) algorithms. A great many optimization techniques exist and it is not possible to provide a complete review in the limited space available here. Instead, an effort is made to concentrate on techniques that are commonly used in engineering optimization applications. The review is kept general in nature, without considering special cases like linear programming, convex problems, multi-objective optimization, multidisciplinary optimization, etc. The advantages and disadvantages of the different techniques are highlighted, and suggestions are made to aid the designer in selecting an appropriate technique for a specific problem at hand. Where possible, a short overview of a representative method is presented to aid the discussion of that particular class of algorithms.

192 citations

Journal ArticleDOI
TL;DR: A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation.
Abstract: MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

132 citations

Journal ArticleDOI
TL;DR: A thorough survey of small-scale patterning methods for scanning electron microscopy (SEM-DIC) can be found in this article, where the authors discuss their advantages and disadvantages for different applications.
Abstract: Digital image correlation (DIC) is a powerful, length-scale-independent methodology for examining full-field surface deformations. Recently, it has become possible to combine DIC with scanning electron microscopy (SEM), enabling the investigation of small-scale deformation mechanisms such as the strains accommodated within grains in polycrystalline metals, or around micro-scale constituents in composite materials. However, there exist significant challenges that need to be surmounted before the combination of DIC and SEM (here termed SEM-DIC) can be fully exploited. One of the primary challenges is the ability to pattern specimens at microstructural length scales with a random, isotropic and high contrast pattern needed for DIC. This paper provides a thorough survey of small-scale patterning methods for SEM-DIC and discusses their advantages and disadvantages for different applications.

127 citations