scispace - formally typeset
Search or ask a question
Author

Richard H. Middleton

Bio: Richard H. Middleton is an academic researcher from University of Newcastle. The author has contributed to research in topics: Control theory & Linear system. The author has an hindex of 48, co-authored 393 publications receiving 12037 citations. Previous affiliations of Richard H. Middleton include Hamilton Institute & University of California.


Papers
More filters
Posted Content
TL;DR: A discontinuous control law is proposed for pH systems with chained structure such that the configuration of the system asymptotically approaches the origin and is robust against the damping and inertial of the open-loop system.
Abstract: In this paper a method of controlling nonholonomic systems within the port-Hamiltonian (pH) framework is presented. It is well known that nonholonomic systems can be represented as pH systems without Lagrange multipliers by considering a reduced momentum space. Here, we revisit the modelling of these systems for the purpose of identifying the role that physical damping plays. Using this representation, a geometric structure generalising the well known chained form is identified as \textit{chained structure}. A discontinuous control law is then proposed for pH systems with chained structure such that the configuration of the system asymptotically approaches the origin. The proposed control law is robust against the damping and inertial of the open-loop system. The results are then demonstrated numerically on a car-like vehicle.

2 citations

Posted Content
TL;DR: This paper proposes a method to robustify a system which has been stabilised using IDA-PBC with respect to constant, matched disturbances via the addition of integral action to be robust against the damping of the system.
Abstract: Interconnection and damping assignment, passivity-based control (IDA-PBC) has proven to be a successful control technique for the stabilisation of many nonlinear systems. In this paper, we propose a method to robustify a system which has been stabilised using IDA-PBC with respect to constant, matched disturbances via the addition of integral action. The proposed controller extends previous work on the topic by being robust against the damping of the system, a quantity which may not be known in many applications.

2 citations

Journal ArticleDOI
TL;DR: In this article, the problem of stabilisation of linear systems with constrained control is considered, and a switching strategy with hysteresis is suggested, so that locally the linear control behaviour is achieved and non-locally the maximum possible region of attraction is achieved.

2 citations

Proceedings ArticleDOI
01 Dec 2018
TL;DR: A new delay alignment feedback controller is developed and evaluated that simultaneously aims to control the delay and the delay skew between the transmission paths and is proved to yield a globally $\mathcal{L}_{2}$ stable feedback system.
Abstract: In fifth generation wireless systems, multi-point transmission will be used to counter the increasing radio shadowing at high carrier frequencies. Due to fading and varying delays over the IP-connections to the transmission nodes, the travel time of data from the source to the application may vary significantly between the different transmission paths. In case of e.g. video streaming this could result in packet reordering problems, leading to protocol resets. The paper therefore develops and evaluates a new delay alignment feedback controller that simultaneously aims to control the delay and the delay skew between the transmission paths. Simulations illustrate the performance of the proposed data flow delay controller. The delay skew controller is also analyzed and proved to yield a globally $\mathcal{L}_{2}$ stable feedback system.

2 citations

Proceedings ArticleDOI
01 Dec 2012
TL;DR: It is shown that the existence of a negative semidefinite solution Q of the Lyapunov equation ATP+AP = Q with a positive definite block diagonal matrix P = PT together with simple additional conditions is sufficient to guarantee asymptotic stability.
Abstract: It is shown that the existence of a negative semidefinite solution Q of the Lyapunov equation ATP+AP = Q with a positive definite block diagonal matrix P = PT together with simple additional conditions is sufficient to guarantee asymptotic stability. The stability conditions presented can be used to study a wider range of dynamical systems, including systems with singularities at the stability boundary, which cannot be exponentially stable.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Proceedings ArticleDOI
15 Oct 1995
TL;DR: In this article, the authors present a model for dynamic control systems based on Adaptive Control System Design Steps (ACDS) with Adaptive Observers and Parameter Identifiers.
Abstract: 1. Introduction. Control System Design Steps. Adaptive Control. A Brief History. 2. Models for Dynamic Systems. Introduction. State-Space Models. Input/Output Models. Plant Parametric Models. Problems. 3. Stability. Introduction. Preliminaries. Input/Output Stability. Lyapunov Stability. Positive Real Functions and Stability. Stability of LTI Feedback System. Problems. 4. On-Line Parameter Estimation. Introduction. Simple Examples. Adaptive Laws with Normalization. Adaptive Laws with Projection. Bilinear Parametric Model. Hybrid Adaptive Laws. Summary of Adaptive Laws. Parameter Convergence Proofs. Problems. 5. Parameter Identifiers and Adaptive Observers. Introduction. Parameter Identifiers. Adaptive Observers. Adaptive Observer with Auxiliary Input. Adaptive Observers for Nonminimal Plant Models. Parameter Convergence Proofs. Problems. 6. Model Reference Adaptive Control. Introduction. Simple Direct MRAC Schemes. MRC for SISO Plants. Direct MRAC with Unnormalized Adaptive Laws. Direct MRAC with Normalized Adaptive Laws. Indirect MRAC. Relaxation of Assumptions in MRAC. Stability Proofs in MRAC Schemes. Problems. 7. Adaptive Pole Placement Control. Introduction. Simple APPC Schemes. PPC: Known Plant Parameters. Indirect APPC Schemes. Hybrid APPC Schemes. Stabilizability Issues and Modified APPC. Stability Proofs. Problems. 8. Robust Adaptive Laws. Introduction. Plant Uncertainties and Robust Control. Instability Phenomena in Adaptive Systems. Modifications for Robustness: Simple Examples. Robust Adaptive Laws. Summary of Robust Adaptive Laws. Problems. 9. Robust Adaptive Control Schemes. Introduction. Robust Identifiers and Adaptive Observers. Robust MRAC. Performance Improvement of MRAC. Robust APPC Schemes. Adaptive Control of LTV Plants. Adaptive Control for Multivariable Plants. Stability Proofs of Robust MRAC Schemes. Stability Proofs of Robust APPC Schemes. Problems. Appendices. Swapping Lemmas. Optimization Techniques. Bibliography. Index. License Agreement and Limited Warranty.

4,378 citations